首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 828 毫秒
1.
聚氯乙烯人造革压延发泡工艺探讨   总被引:1,自引:0,他引:1  
分析了纯放热性发泡剂AC与吸—放热复合发泡剂DDL-l05、DDL—107的分解特性和发泡特性。通过改变工艺条件和基础配方,探讨PVC相对分子质量、发泡剂分解特性、DOP用量、CaCO3用量对人造革发泡倍率、泡孔结构的影响,发现DDL-l05、DDL-107、AC三种发泡剂的发泡特性与其分解特性对应,选择PVC S700为基料,及适量DOP和CaCO3,发泡倍率与泡孔结构较理想。  相似文献   

2.
木粉/低密度聚乙烯复合材料的发泡研究   总被引:1,自引:1,他引:1  
用模压法制备木粉/低密度聚乙烯发泡材料。通过差示量热扫描分析,考察了纯偶氮二甲酰胺(AC)及与 ZnO共混物、纯NaHCO3及与柠檬酸(L)共混物的热分解特性,探讨了发泡剂AC、NaHCO3、柠檬酸、交联剂过氧化二异丙苯等对材料力学性能的影响,并在扫描电镜下观察了材料断面的微观形态。结果表明:采用放热发泡剂和复合发泡剂都能使复合材料密度下降20%左右,发泡后材料的冲击性能为发泡前体系的1.5倍左右;复合发泡剂的发泡效果优于单放热发泡剂的效果。  相似文献   

3.
PVC/木塑发泡复合材料性能研究   总被引:1,自引:0,他引:1  
实验采用PVC树脂与木粉,加入发泡剂及各种添加剂制得了PVC木塑发泡复合材料,主要研究了木粉粒径、放热型发泡剂偶氮二甲酰胺和吸热型发泡剂碳酸氢钠用量、泡孔调节剂ACR以及加工改性剂MBR用量对复合材料力学性能及材料密度的影响,并通过SEM电镜照片分析对比了单纯使用AC和采用AC与NaHCO3复合发泡时制品的发泡性能及泡孔结构,同时分析了泡孔调节剂ACR用量对PVC木塑发泡复合材料中泡孔大小,泡孔结构及其在基体中分布状态的影响.结果表明:当木粉粒径为20目,AC与NaHCO3用量均为1份,ACR用量为8份时所得材料的综合性能最佳,泡孔结构最理想.  相似文献   

4.
PVC/木粉复合材料的发泡研究   总被引:1,自引:0,他引:1  
采用PVC树脂和木粉加入发泡剂制得PVC/木粉发泡复合材料。通过差示量热扫描分析(DSC)考察了偶氮二甲酰胺(AC)、NaHCO3及AC/NaHCO3/PVC稳定剂共混物的热分解特性。研究了木粉的不同粒径、AC发泡剂、NaHCO3、交联剂DCP和ACR的含量对复合材料力学性能的影响。结果表明:通过发泡能有效降低材料的密度;当AC含量为PVC用量的1%,木粉粒径为20目,NaHCO3与AC用量比为1∶1,DCP含量为PVC用量的0.4%,ACR含量为PVC用量的8%,所得的发泡复合材料综合性能较好。  相似文献   

5.
以偶氮二甲酰胺(AC发泡剂)、Zn O和Na HCO3复合体系作为发泡剂,采用模压发泡的方法制备高填充粉煤灰聚氯乙烯(PVC)复合发泡板材,确定复合发泡剂的最优配比及其在复合发泡板材中的最佳用量,并对其性能进行了研究。采用发气量测定、热重/差示扫描量热(TG/DSC)分析对AC发泡剂进行了改性研究,选出分解温度满足加工条件的复合发泡剂。添加不同份数的复合发泡剂制备PVC复合发泡板材,用扫描电子显微镜(SEM)分析其断面,测试板材的冲击强度及弯曲强度。实验结果表明,当AC发泡剂、Zn O和Na HCO3的配比为2∶1∶1.5时,最大发气量为213 m L/g,分解温度区间为165~177℃,满足PVC发泡板材加工。当复合发泡剂添加量为6份时,力学性能达到最佳,弯曲强度为17.63 MPa,冲击强度为21.88 k J/m2,达到国家硬质聚氯乙烯低发泡板材的标准;粉煤灰填充量高达61.16%。  相似文献   

6.
低密度聚苯乙烯仿木线材挤出发泡研究   总被引:2,自引:0,他引:2  
结合聚苯乙烯(PS)化学自由挤出发泡工艺,探讨了合成级新料与再生原料树脂的特性对发泡效果和发泡制品冲击性能的影响;比较了放热型改性AC发泡剂、吸热型改性NaHCO3放热吸热复合发泡剂对再生料PS发泡制品的密度、泡孔结构、气孔均匀度的影响;探究了不同发泡剂对发泡制品芯层泡孔结构的影响。结果表明,发泡剂含量为1 %时,采用AC发泡剂和复合发泡剂的发泡制品的密度分别为0.47 g/cm3和0.39 g/cm3。  相似文献   

7.
发泡剂对软质PVC发泡材料性能的影响   总被引:1,自引:0,他引:1  
对发泡剂偶氮二甲酰胺(AC)及其共混物、碳酸氢钠(NaHCO3)进行了DSC分析,讨论了几种AC共混物对软质PVC发泡材料性能的影响。结果表明:当AC/NaHCO3/稳定剂的质量比为4/0.8/6.2时,材料的密度可以降至0.3g/cm3以下,但材料的泡孔直径增大,力学性能有所降低;当AC/NaHCO3/L/稳定剂为4/0.8/0.6/6.2时,材料的密度继续降低,泡孔直径减小,其强度、回弹性增大,但断裂伸长率减小;当AC/NaHCO3/L/Na-L/稳定剂为4/0.8/0.6/1.0/6.2时,复合发泡剂受热时分解平缓、放热适中,制得的材料性能最佳,泡孔均匀细密。  相似文献   

8.
依据热平衡发泡原理,选择NaHCO3、偶氮二甲酰胺(AC)、偶氮二异丁腈和4,4-氧代双苯磺酰肼组成不同热平衡复合发泡剂发泡不饱和聚酯树脂,通过示差扫描量热仪(DSC)、扫描电镜(SEM)和力学性能测试对其发泡机制进行了研究。结果表明:先吸热后放热的热平衡复合发泡剂发泡材料泡孔孔径小且分布均匀。AC与NaHCO3质量比为6∶4组成的热平衡发泡剂制得的发泡不饱和聚酯树脂的表观密度为0.546 g/cm3,压缩强度为13.73 MPa,比压缩强度达到25.15 MPa/(g.cm-3)。  相似文献   

9.
采用液态施工法与自由发泡工艺制备了发泡丁腈橡胶-金属复合垫片,基于差热分析探讨了不同发泡剂(AC,OBSH,H,NaHCO3,AK-12,AK-400)作用下丁腈橡胶的发泡效果,并研究了不同用量的发泡剂AC对涂层性能的影响。结果表明,发泡剂的起始分解温度和突发性对涂层泡孔结构的影响较大,发泡剂AC的起始分解温度和突发性与胶料的硫化匹配得较好;草酸能有效地降低发泡剂NaHCO3的分解温度,硼砂能降低发泡剂H的分解温度;发泡剂AC、OBSH及H的分散性较好,而NaHCO3、AK-400及AK-12较差。在发泡剂AC用量为6~8份(质量)时涂层的泡孔为闭孔结构,发泡倍率较高,泡孔密度较大,力学性能优良,适合作为密封材料使用。  相似文献   

10.
采用动态热流式差示扫描量热仪对自制改性偶氮二甲酰胺(AC)发泡剂进行了分析,并研究了其用量对聚氯乙烯(PVC)木塑复合材料力学性能的影响。结果表明,该改性AC发泡剂的分解温度在165~187 ℃,与传统AC发泡剂相比分解温度降低约40 ℃,且峰值放热量降低了39.5 %;改性AC发泡剂的平均发气量为189 mL/mg;扫描电子显微镜分析表明,使用1.2份改性AC发泡剂时获得的PVC木塑复合材料的泡孔致密均匀,明显优于使用未改性AC发泡剂的情况;与未发泡的材料相比,使用1.2份改性AC发泡剂时, PVC木塑复合材料的冲击强度提高了34.6 %,表观密度降低了22.5 %。  相似文献   

11.
采用热重分析仪和示差扫描量热分析仪研究了偶氮二甲酰胺(AC)、N,N′-二亚硝基五次甲基四胺(H)、4,4′-氧代双苯磺酰肼(OBSH)、NaHCO34种发泡剂的分解特性。发现发泡剂AC与H的分解具有较强的突发性,发泡剂OBSH的突发性较弱,NaHCO3分解的突发性最弱。发泡助剂可以明显地降低发泡剂的分解温度,但是对发泡剂分解的突发性影响不大。发泡剂单独使用时以OBSH为最佳;复配使用时,当AC和H以2∶1的质量比使用时,效果最佳。以添加质量比为2∶1的AC和H复配发泡剂A为研究对象时,丁腈橡胶(NBR)发泡制品密度随发泡剂量的增加而逐渐减小,且当其用量超过12质量份时,密度减小的幅度变小。  相似文献   

12.
采用化学发泡法,用热塑性聚氨酯(PUR–T)及偶氮二甲酰胺(AC)/Na HCO3,AC/尿素及4,4’–氧代双苯磺酰肼(OBSH)/Na HCO3,OBSH/尿素复合发泡剂和交联剂甲苯二异氰酸酯(TDI)制备出交联型PUR–T发泡材料,通过万能电子试验机、发泡倍数和扫描电子显微镜分析比较了不同复合发泡剂的发泡效果,探讨了AC/Na HCO3用量配比和TDI用量对PUR–T发泡材料力学性能、发泡倍数和泡孔结构的影响。结果表明,AC/Na HCO3复合发泡剂对PUR–T的发泡效果最佳,泡孔均匀细密且结构最为稳定;当AC和Na HCO3用量均为0.2份、TDI用量为1.2份时,发泡剂的发泡速率和PUR–T的交联速率最匹配,发泡倍数为1.421倍,发泡效果最佳,制得的PUR–T发泡材料的力学性能最好,其拉伸强度达11.23 MPa,断裂伸长率达311%。  相似文献   

13.
通过单螺杆熔融挤出制备了热塑性聚酯弹性体(TPEE)发泡片材.研究了复合发泡剂偶氮二甲酰胺(AC)/碳酸氢柠檬酸配比、发泡剂包覆体以及TPEE交联剂对发泡片材性能的影响.表观密度、力学性能和SEM结果显示:复合发泡剂AC/碳酸氢钠/柠檬酸的最佳质量比为15/5/5,丙烯酸酯包覆体可使TPEE发泡效果变好.凝胶含量和压缩永久形变结果显示:凝胶含量随交联剂用量的增加而增大,环氧交联剂用量为0.8份和异氰酸酯交联剂用量为1份时,发泡片材的压缩永久形变最小.动态力学分析(DMA)显示:交联发泡片材的损耗因子(tanδ)大于0.25,峰值温度130℃.扫描电镜和光学显微镜结果显示:异氰酸酯交联剂用量为1份时,发泡片材的泡孔直径大小均匀,分布集中.  相似文献   

14.
采用低密度聚乙烯(LDPE)对聚丙烯(PP)进行共混改性,以过氧化二异丙苯(DCP)为交联剂,偶氮二甲酰胺(AC)为发泡剂,通过模压法制备了聚丙烯发泡材料。研究了LDPE,AC,DCP的用量以及模压工艺条件对聚丙烯发泡效果的影响。结果表明:当m(PP):m(LDPE):77z(AC):m(DCP)=50:50:4:0.1,模压温度200℃时,聚丙烯发泡材料的密度最小,为0.13g/cm^3。  相似文献   

15.
研究了影响低密度聚乙烯(LDPE)模压发泡保温材料质量的因素,同时制取了具备保温材料特性的复配物。结果表明:发泡剂与活化剂用量比对LDPE模压发泡密度的影响最大,发泡温度次之。适合用于LDPE的发泡保温材料的最优制备条件为:发泡温度175℃,发泡压力10MPa,ADC/ZnO的质量比为10/1,硬脂酸用量1.5份。  相似文献   

16.
无氯氟化学发泡剂CFA8125可与异氰酸酯反应放出CO2气体,用于硬质聚氨酯发泡,分别使用无氯氟化学发泡剂CFA8125、第三代物理发泡剂HFC–245fa和第四代物理发泡剂LBA制备硬质聚氨酯泡沫,并对其性能进行了研究。结果表明,所得硬质聚氨酯泡沫的密度为43 kg/m3左右时,使用化学发泡剂的硬质聚氨酯泡沫在长、宽、高方向上的压缩强度分别为257,228,280 KPa,均高于使用物理发泡剂的泡沫,具有良好的压缩强度。使用化学发泡剂的硬质聚氨酯泡沫在–160℃时的热导率为10.10 mW/(m·K),较使用物理发泡剂的硬质聚氨酯泡沫低20%左右,更具保温效果,且–196℃下的尺寸稳定性优良,符合使用标准,可适用于深冷环境保温。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号