首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
The separation of Eu3+ is studied with a dispersion combined liquid membrane (DCLM), in which polyvinylidene fluoride membrane (PVDF) is used as the liquid membrane support, dispersion solution containing HCl solution as the stripping solution, and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution. The effects of pH value, initial concentration of Eu3+ and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the separation are investigated. The optimum condition for separation of Eu3+ is that concentration of HCl solution is 4.0 mol•L1, concentration of carrier is 0.16 mol•L1, and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase. The ionic strength has no significant effect on separation of Eu3+. Under the optimum condition, when the initial concentration of Eu3+ is 0.8×104 mol•L1, the separation percentage of Eu3+ is 95.3% during the separation time of 130 min. The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Eu3+ in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×107 m2•s1 and 36.6 μm, respectively. The results obtained are in good agreement with literature data.  相似文献   

2.
Recombinant Escherichia coli BL21 is used to produce human-like collagen. The key constituents of media are optimized using response surface methodology (RSM). Before thermal induction, the highest biomass production and the lowest production of some hazardous by-products, especially acetic acid, were obtained in the media containing 0.085 mol∙L1 glucose and 0.019 mol∙L1 nitrogen (carbon-nitrogen ratio, 4.47︰1). After thermal induction, when the concentrations of glucose and nitrogen in the media were 0.065 mol∙L1 and 0.017 mol∙L1, respectively (carbon-nitrogen ratio, 3.82︰1), the productivity of human-like collagen per cell was the highest while that of acetic acid was the lowest. The extended analysis showed that the production of lactic acid and propionic acid increased while that of some intermediate acids of the tricarboxylic acid cycle decreased if the dose of glucose in-creased.  相似文献   

3.
This paper reports on ¬¬¬a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate (TEOS) and a bridged silsesquioxane [1, 2-bis(triethoxysilyl)ethane, BTESE] as precursors. A stable nano-sized composite silica sol with a mean volume size of ~5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporous γ-Al2O3 intermediate layer by using dip-coating ap-proach, followed by calcination under pure nitrogen atmosphere. The composite silica membranes exhibit molecular sieve properties for small gases like H2, CO2, O2, N2, CH4 and SF6 with hydrogen permeances in the range of (1-4)107 mol•m2•s1•Pa1 (measured at 200 C, 3.0×105 Pa). With respect to the membrane calcined at 500 C, it is found that the permselectivities of H2 (0.289 nm) with respect to N2 (0.365 nm), CH4 (0.384 nm) and SF6 (0.55 nm) are 22.9, 42 and >1000, respectively, which are all much higher than the corresponding Knudsen values (H2/N2 3.7, H2/CH4 2.8, and H2/SF6 8.5).  相似文献   

4.
Amine-functionalized mesoporous silica was prepared by using lauric acid and N-stearoyl-l-glutamic acid as structure directing agents via the SN+-I mechanism and applied to CO2 adsorption at room temperature. With γ-aminopropyltriethoxysilane as co-structure directing agent and due to the direct electrostatic interaction with anionic surfactant, most of the amino groups were uniformly distributed at the inner surface of pores and the performance was stable. The amine-functionalized mesoporous silica was characterized by Fourier transform infrared spectrometer, X-ray diffraction, nitrogen physisorption and thermogravimetric analysis. The CO2 adsorption capacity was measured by digital recording balance. At the room temperature and under the atmospheric pres-sure, the adsorption capacity of LAA-AMS-0.2 for CO2 and N2 is 1.40 mmol•g1 and 0.03 mmol•g1, respectively, indicating high separation coefficient of CO2/N2.  相似文献   

5.
The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg•L-1 within 59.5 h. In the dual-substrate biodegradation, both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A total of 400 mg•L-1 4-cp was completely degraded within 50.5 h in the presence of 300 mg•L-1 phenol. The maximum 4-cp biodegradation could reach 440 mg•L-1 with 120 mg•L-1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.  相似文献   

6.
The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up.  相似文献   

7.
Considering limited success in target-hitting discharge from alcohol industry, our attention was directed toward a recycling use of distillery spentwash (DS) in cassava bioethanol production by using a two-stage up-flow anaerobic sludge blanket bioremediation (TS-UASBB). With the TS-UASBB, , COD, N and P in the effluent from the DS degraded significantly and their concentrations were kept at 0.2 g•L1, 2.0 g•L1, 1.0 g•L1 and 15 mg•L1, respectively, in 13 batch processes for water-recycled ethanol fermentation. With the effluent used directly as dilution water, no heat-resistant bacteria were found alive. The thirteen-batch ethanol production individually achieved 10% after 48 h fermentation. The starch utilization ratio and total sugar consumption were 90% and 99.5%, respectively. The novel water-recycled bioethanol production process with ethanol fermentation and TS-UASBB has a considerable potential in other starchy and cellulosic ethanol production.  相似文献   

8.
The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated. The experiments were conducted using a wide range of initial fluoride concentrations (0.5 to 180 mg•L1 at pH ~7.0) and an adsorbent dose of 1.0 g•L1. The application of Langmuir and Freundlich adsorption isotherm models (linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap. Experimental data on low equilibrium concentrations (0.1 to 5.0 mg•L1) was in line with both Langmuir and Freundlich isotherm models, whereas that of high equilibrium concentrations (5.0 to 150 mg•L1) was more in line with the Freundlich isotherm model. A new Langmuir- Freundlich function was used for the entire concentration gap, as well as for low and high concentrations.  相似文献   

9.
Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation per-formance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40 C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g•m2•h1 and 26.1, respec-tively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.  相似文献   

10.
The free-radical growth mechanisms for the formation of polycyclic arenes (PCAs) were constructed based on the block unit of benzene, and were calculated by the quantum chemistry PM3 method. Two kinds of reaction paths are proposed and discussed. The calculation results show that the formation of PCAs is only controlled by the elimination of H atom from benzene, and the corresponding activation energy is 307.60 kJ•mol-1. H2 is only the ef-fluent gas in our proposed reaction mechanism, and the calculation results are in accord with the experimental facts.  相似文献   

11.
abstract The heterogeneity of adsorption sites and adsorption kinetics of n-hexane on a chromium terephthalate-based metal-organic framework MIL-101(Cr) were studied by gravimetric method and temperatu...  相似文献   

12.
In this work, the feasibility of using a macroporous strong acid ion exchange resin (D72) as an adsorbent for praseodymium (Ⅲ) was examined. The adsorption behavior and mechanism were investigated with various chemical methods and IR spectrometry. The results showed that the loading of Pr (III) ions was strongly dependent on pH of the medium and the optimal adsorption condition is in HAc-NaAc medium with pH value of 3.0. Adsorption kinetics of Pr (III) ions onto D72 resin could be best described by pseudo-second-order model. The maximum adsorption capacity of D72 for Pr (Ⅲ) was evaluated to be 294 mg·g 1 for the Langmuir model at 298K. The apparent activation energy, E a , was 14.71 kJ·mol 1 . The calculated data of thermodynamic parameters, ΔSΘ value of 100 J·mol 1 ·K 1 and ΔHΘ value of 8.89 kJ·mol 1 , indicate the endothermic nature of the adsorption process, while a decrease of ΔGΘ with increasing temperature indicates the spontaneous nature of the adsorption process. Finally, Pr (Ⅲ) can be eluted by using 1.00 mol·L 1 HCl-0.50 mol·L 1 NaCl solution and the D72 resin can be regenerated and reused. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The characterization before and after adsorption of Pr (Ⅲ) ions on D72 resin was conformed by IR.  相似文献   

13.
A polyaluminium chloride solution with high Al 13 content self-prepared was used as material for preparing the spherical γ-Al 2 O 3 by the sol-gel and oil-drop method. Polyethylene glycol with different molecular mass was used as surfactant to investigate the effect on property of γ-Al 2 O 3 . The physical property was characterized by 27 Al NMR (nuclear magnetic resonance) spectra, X-ray diffraction, FT-IR (Fourier transform infrared spectroscopy) and TG-DTA (thermogravimetric-differential thermal analysis). The results showed that surface area, pore volume and pore size of γ-Al 2 O 3 all increased with the increase of polyethylene glycol molecular mass in the experimental research range, and polyethylene glycol 10000 was the most suitable pore forming additive. γ-Al 2 O 3 with surface area of 339 m 2 ·g 1 , pore volume of 0.59 cm 3 ·g 1 and pore diameter of 6.9 nm were obtained at 450 °C.  相似文献   

14.
曹蕃  苏胜  向军  王鹏鹰  胡松  孙路石  张安超 《化工学报》2014,65(10):4056-4062
采用密度泛函理论(DFT)方法研究了NO和NH3在完整和有缺陷的γ-Al2O3(110)表面吸附与SCR(选择催化还原)反应特性。研究表明,NO在完整的(110)表面的吸附作用较弱,而NH3分子的吸附作用较强,NH3分子在Al原子顶位可形成稳定吸附。反应路径研究结果表明完整的(110)表面上SCR反应的决速步为-NH2NO基团的分解,反应的最大能垒为235.75 kJ·mol-1。对于产生氧空穴的有缺陷(110)表面,NO和NH3均可稳定吸附,NH3在吸附过程中可直接裂解成NH2和H。另外,SCR反应在有缺陷(110)表面的最大能垒明显较低,说明氧空穴的存在促进了SCR脱硝反应的进行。  相似文献   

15.
EU-1 zeolites were sequentially treated with low-concentration sodium carbonate(Na_2CO_3) and hydrochloric acid(HCl) solutions.The obtained samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N_2 adsorption/desorption,temperature programmed desorption of NH_3(NH_3-TPD),solid state~(27)A1 nuclear magnetic resonance(~(27)A1 NMR),and the catalytic performances of the treated samples were tested in the xylene isomerization reaction.The results showed that the external surface area and mesoporous volume of the sample sequentially treated with 0.05 mol·L~(-1) Na_2CO_3 and 0.1 mol·L~(-1) HCl solutions reached73.9 m~2·g~(-1) and 0.162 cm~3·g~(-1),respectively.The catalytic performances of EU-1 zeolites were significantly improved,that the activity of the probe reaction increased from 23.03%to 23.61%and the selectivity increased from85.09%to 87.14%compared with those of parent sample.Furthermore,it was found that only amorphous silica and alumina species was dissolved during the post-treatment process,but the framework structure and the acidic properties of EU-1 zeolite remained intact.  相似文献   

16.
Deterioration and loss of quality of vegetable oil is a big challenge in the food industry. This study investigated the synthesis of nickel ferrite (NiFe2O4) via co-precipitation method and its use for the removal of free fatty acids (FFAs) in deteriorated vegetable oil. NiFe2O4 was characterized using Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric (TG) analysis, Brunauer–Emmett–Teller (BET) surface area, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Synthesis of NiFe2O4 was confirmed by characterization, which revealed a BET surface area of 16.30 m2·g-1 and crystallite size of 29 nm. NiFe2O4 exhibited an adsorption capacity of 145.20 L·kg-1 towards FFAs with an 80.69% removal in a process, which obeys Langmuir isotherm and can be described by the pseudo-second-order kinetic model. The process has enthalpy (ΔH) of 11.251 kJ·mol-1 and entropy (ΔS) of 0.038 kJ·mol-1·K-1 with negative free energy change (ΔG), which suggests the process to be spontaneous and endothermic. The quantum chemical computation analysis via density functional theory further revealed the sorption mechanism of FFAs by NiFe2O4 occurred via donor–acceptor interaction, which may be described by the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The study showed NiFe2O4 to be a potential means that can remove FFAs from deteriorated vegetable oil.  相似文献   

17.
Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m~2·g~(-1) and 5.18 mmol·g~(-1), respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO_3 H in resin. The removal process was studied as a function of temperature, H_3 PO_4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g~(-1) resin when the operating parameters were T = 50 ℃, H_3 PO_4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol~(-1). The overall reaction process was mainly controlled by pore diffusion.  相似文献   

18.
Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.  相似文献   

19.
A series of CuO/ZnO/Al_2O_3, CuO/ZnO/ZrO_2/Al_2O_3 and CuO/ZnO/CeO_2/Al_2O_3 catalysts were prepared by coprecipitation and characterized by N_2 adsorption, XRD, TPR, N_2O titration and HRTEM. The catalytic performances of these catalysts for the steam reforming of methanol were evaluated in a laboratory-scale fixed-bed reactor at 0.1 MPa and temperatures between 473 and 543 K. The results showed that the catalytic activity depended greatly on the catalyst reducibility and the specific surface area of Cu. An approximate linear correlation between the catalytic activity and the Cu surface area was found for all catalysts investigated in this study.Compared to CuO/ZnO/Al_2O_3, the ZrO_2-doped CuO/ZnO/Al_2O_3 exhibited higher activity and selectivity to CO,while the CeO_2-doped catalyst displayed lower activity and selectivity. Finally, an intrinsic kinetic study was carried out over a screened CuO/ZnO/CeO_2/Al_2O_3 catalyst in the absence of internal and external mass transfer effects. A good agreement was observed between the model-derived effluent concentrations of CO(CO_2) and the experimental data. The activation energies for the reactions of methanol-steam reforming, water-gas shift and methanol decomposition over CuO/ZnO/CeO_2/Al_2O_3 were 93.1, 85.1 and 116.5 k J·mol~(-1), respectively.  相似文献   

20.
陈坦  陈皓  傅杰  陈可泉  欧阳平凯 《化工学报》2017,68(6):2344-2351
采用等体积浸渍法制备了不同负载量(1%~7%)的CuO/HZSM-5催化剂,在固定床反应器中研究了不同反应温度、溴甲烷流量以及CuO负载量对溴甲烷芳构化催化性能的影响。采用SEM、XRD、N2吸附脱附、TEM、XPS、TG、DSC、NH3-TPD等技术对反应前后的催化剂进行表征。XRD 结果显示活性组分CuO 在HZSM-5上具有很好的分散性,并且反应后Cu晶型不变。NH3-TPD 结果显示3%的CuO 负载后,催化剂强酸量增加。在CuO 负载量为3%,温度为360℃,反应空速为240 ml·g-1·h-1 条件下得到最高的芳烃收率(22.3%)。XPS 结果显示反应后在催化剂上主要的积炭为石墨碳。催化剂稳定性测试结果表明反应40 h内催化活性没有明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号