首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult humans and mice possess significant classical brown adipose tissues (BAT) and, upon cold-induction, acquire brown-like adipocytes in certain depots of white adipose tissues (WAT), known as beige adipose tissues or WAT browning/beiging. Activating thermogenic classical BAT or WAT beiging to generate heat limits diet-induced obesity or type-2 diabetes in mice. Adiponectin is a beneficial adipokine resisting diabetes, and causing “healthy obese” by increasing WAT expansion to limit lipotoxicity in other metabolic tissues during high-fat feeding. However, the role of its receptors, especially adiponectin receptor 1 (AdipoR1), on cold-induced thermogenesis in vivo in BAT and in WAT beiging is still elusive. Here, we established a cold-induction procedure in transgenic mice over-expressing AdipoR1 and applied a live 3-D [18F] fluorodeoxyglucose-PET/CT (18F-FDG PET/CT) scanning to measure BAT activity by determining glucose uptake in cold-acclimated transgenic mice. Results showed that cold-acclimated mice over-expressing AdipoR1 had diminished cold-induced glucose uptake, enlarged adipocyte size in BAT and in browned WAT, and reduced surface BAT/body temperature in vivo. Furthermore, decreased gene expression, related to thermogenic Ucp1, BAT-specific markers, BAT-enriched mitochondrial markers, lipolysis and fatty acid oxidation, and increased expression of whitening genes in BAT or in browned subcutaneous inguinal WAT of AdipoR1 mice are congruent with results of PET/CT scanning and surface body temperature in vivo. Moreover, differentiated brown-like beige adipocytes isolated from pre-adipocytes in subcutaneous WAT of transgenic AdipoR1 mice also had similar effects of lowered expression of thermogenic Ucp1, BAT selective markers, and BAT mitochondrial markers. Therefore, this study combines in vitro and in vivo results with live 3-D scanning and reveals one of the many facets of the adiponectin receptors in regulating energy homeostasis, especially in the involvement of cold-induced thermogenesis.  相似文献   

2.
Glucocorticoids (GCs) are hormones that aid the body under stress by regulating glucose and free fatty acids. GCs maintain energy homeostasis in multiple tissues, including those in the liver and skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). WAT stores energy as triglycerides, while BAT uses fatty acids for heat generation. The multiple genomic and non-genomic pathways in GC signaling vary with exposure duration, location (adipose tissue depot), and species. Genomic effects occur directly through the cytosolic GC receptor (GR), regulating the expression of proteins related to lipid metabolism, such as ATGL and HSL. Non-genomic effects act through mechanisms often independent of the cytosolic GR and happen shortly after GC exposure. Studying the effects of GCs on adipose tissue breakdown and generation (lipolysis and adipogenesis) leads to insights for treatment of adipose-related diseases, such as obesity, coronary disease, and cancer, but has led to controversy among researchers, largely due to the complexity of the process. This paper reviews the recent literature on the genomic and non-genomic effects of GCs on WAT and BAT lipolysis and proposes research to address the many gaps in knowledge related to GC activity and its effects on disease.  相似文献   

3.
Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.  相似文献   

4.
Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.  相似文献   

5.
6.
Background: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. Methods: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. Results: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. Conclusions: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.  相似文献   

7.
In recent decades, the obesity epidemic has resulted in morbidity and mortality rates increasing globally. In this study, using obese mouse models, we investigated the relationship among urokinase plasminogen activator (uPA), metabolic disorders, glomerular filtration rate, and adipose tissues. Two groups, each comprised of C57BL/6J and BALB/c male mice, were fed a chow diet (CD) and a high fat diet (HFD), respectively. Within the two HFD groups, half of each group were euthanized at 8 weeks (W8) or 16 weeks (W16). Blood, urine and adipose tissues were collected and harvested for evaluation of the effects of obesity. In both mouse models, triglyceride with insulin resistance and body weight increased with duration when fed a HFD in comparison to those in the groups on a CD. In both C57BL/6J and BALB/c HFD mice, levels of serum uPA initially increased significantly in the W8 group, and then the increment decreased in the W16 group. The glomerular filtration rate declined in both HFD groups. The expression of uPA significantly decreased in brown adipose tissue (BAT), but not in white adipose tissue, when compared with that in the CD group. The results suggest a decline in the expression of uPA in BAT in obese m models as the serum uPA increases. There is possibly an association with BAT fibrosis and dysfunction, which may need further study.  相似文献   

8.
9.
Alpine marmots (Marmota marmota) were maintained on a laboratory diet, and the fatty acid composition of gonadal and subcutaneous whilte adipose tissues (WAT) was studied during a yearly cycle. Fatty acids (FA) released from isolated adipocytes were also identified after stimulation of in vitro lipolysis. Analysis of the FA composition of WAT depots showed that marmot WAT mainly contained monounsaturated FA(65%, mostly oleic, acid, 18:1n-9) although laboratory food contained 45% of linoleic acid (18:2n-6) and only 21% of 18:1n-9. During stimulated lipolysis, saturated FA were preferentially released from isolated adipocytes whereas unsaturated FAs were retained. Despite this selective release of FA from isolated WAT cells in vitro, and despite the FA composition of the food, marmots maintained a constant FA composition in both WAT depots throughout the year. Six months of hibernation and fasting as well as an intense feeding period did not affect this composition. The potential adaptive benefit of such regulation of WAT composition, based on a high level of monounsaturated FA, might be to maintain fat with appropriate physical properties allowing animals to accommodate to and survive the wide range of body temperatures experienced during hibernation.  相似文献   

10.
The triacylglcyerols of white adipose tissue (WAT) from animals with high rates of lipogenesis, such as obese hyperglycemic mice or hypothalamically lesioned rats, contain high proportions of palmitoleic acid (16∶1) and low proportions of linoleic acid (18∶2). These differences appear to result from dilution of dietary 18∶2 by synthesized fatty acids, particularly 16∶1. To test this we have investigated the triacylglycerol fatty acid composition of brown and white adipose tissue of lean and obese mice, as brown adipose tissue (BAT) has a higher lipogenic rate than WAT and lipogenesis is faster in obese than in lean mice. Between three and eight weeks of age the proportions of fatty acids in the tissues changed, with a marked fall in milk-derived lauric and myristic acids. From 8 to 16 weeks they were more stable and the proportions of 16∶1 and 18∶2 in the different tissues were as expected, with the highest and lowest proportions, respectively, in BAT from obese mice. When BAT from obese mice was transplanted under the kidney capsule of lean mice, or vice versa, for one month, the fatty acid composition of the grafts changed toward that of the host BAT. The proportions of 18∶2 and, to a lesser extent, 16∶1 were slightly higher in the grafts than in the hosts but since this also occurred in lean-to-lean and obese-to-obese grafts it was probably a transplantation artifact. Overall, the results confirm than the physiological environment, rather than the source of the adipose tissue, is the major determinant of its fatty acid composition.  相似文献   

11.
17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an sEH inhibitor, t-TUCB, decreased serum triglycerides (TG) and increased lipid metabolic protein expression in the brown adipose tissue (BAT) of diet-induced obese mice. This study investigates the preventive effects of t-TUCB (T) alone or combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) on BAT activation in the development of diet-induced obesity and metabolic disorders via osmotic minipump delivery in mice. Both T + EDP and T + EEQ groups showed significant improvement in fasting glucose, serum triglycerides, and higher core body temperature, whereas heat production was only significantly increased in the T + EEQ group. Moreover, both the T + EDP and T + EEQ groups showed less lipid accumulation in the BAT. Although UCP1 expression was not changed, PGC1α expression was increased in all three treated groups. In contrast, the expression of CPT1A and CPT1B, which are responsible for the rate-limiting step for fatty acid oxidation, was only increased in the T + EDP and T + EEQ groups. Interestingly, as a fatty acid transporter, CD36 expression was only increased in the T + EEQ group. Furthermore, both the T + EDP and T + EEQ groups showed decreased inflammatory NFκB signaling in the BAT. Our results suggest that 17,18-EEQ or 19,20-EDP combined with t-TUCB may prevent high-fat diet-induced metabolic disorders, in part through increased thermogenesis, upregulating lipid metabolic protein expression, and decreasing inflammation in the BAT.  相似文献   

12.
Central and peripheral serotonin (5HT) have opposing functions in the regulation of energy homeostasis. Both increasing 5HT signaling in the brain and decreasing 5HT signaling in the periphery have been proposed as potential treatments for obesity. This study investigates the relationship between constitutionally high or low 5HT activity and systemic net energy balance. Two sublines of rats with high and low whole-body 5HT tone, obtained by selective breeding for platelet 5HT parameters, were examined for fat accumulation in different white adipose tissue (WAT) depots, glucose/insulin tolerance, blood metabolic parameters, and expression of various metabolic genes. High-5HT animals, unlike their low-5HT counterparts, developed widespread intra-abdominal obesity associated with glucose and insulin intolerance, which worsened with age. They also had elevated blood glucose and lipid parameters but showed no significant changes in circulating leptin, resistin, and adipsin levels. Surprisingly, adiponectin levels were increased in plasma but reduced in the WAT of high-5HT rats. A limited number of metabolic genes belonging to different functional classes showed differential expression in WAT of high-5HT compared to low-5HT rats. Overall, a constitutive increase in 5HT tone is associated with a positive energy balance acting through subtle dysregulation of a broad spectrum of metabolic pathways.  相似文献   

13.
Frick F  Hume R  Robinson IC  Edén S  Oscarsson J 《Lipids》2008,43(4):313-324
Transgenic Late-onset OBesity (LOB) rats slowly develop a male-specific, autosomal dominant, obesity phenotype with a specific increase in peri-renal white adipose tissue (WAT) depot and preserved insulin sensitivity (Bains et al. in Endocrinology 145:2666–2679, 2004). To better understand the remarkable phenotype of these rats, the lipid metabolism was investigated in male LOB and non-transgenic (NT) littermates. Total plasma cholesterol (C) levels were normal but total plasma triacylglycerol (TAG) (2.8-fold) and hepatic TAG content (25%) was elevated in LOB males. Plasma VLDL-C and VLDL-TAG levels were higher while plasma apoB levels were 60% lower in LOB males. Increased hepatic TAG secretion explained the increased VLDL levels in LOB males. The hepatic gene expression of FAS, SCD-1, mitochondrial (mt)GPAT, and DGAT2 was up-regulated in both old obese and young non-obese LOB rats. Lipoprotein lipase (LPL) activity in heart and epididymal white adipose tissue (WAT) was unchanged, while LPL activity was increased in peri-renal WAT (30%) and decreased in soleus muscle (40%). Moreover, FAS, SCD-1 and DGAT2 gene expression was increased in peri-renal, but not in epididymal WAT. Basal lipolysis was reduced or unchanged and β-adrenergic stimulated lipolysis was reduced in WAT from both old obese and young non-obese LOB rats. To summarize, the obese phenotype of LOB male rats is associated with increased hepatic TAG production and secretion, a shift in LPL activity from skeletal muscle to WAT, reduced lipolytic response in WAT depots and a specific increase in expression of genes responsible for fatty acid and TAG synthesis in the peri-renal depot. F. Frick and R. Hume contributed equally to this work.  相似文献   

14.
The objective of this study was to evaluate the status of the markers related to inflammation in db/db mice fed black raspberry seed (BRS) oil, which is rich in α‐linolenic acid. Mice were divided into four groups: (1) C57BL/6 mice fed 16 % calories from soybean oil (normal CON); (2) C57BL/KsJ‐db/db mice fed 16 % calories from soybean oil (CON); (3) C57BL/KsJ‐db/db mice fed 8 % calories from soybean and 8 % calories from BRS oil (BRS 50 %); and (4) C57BL/KsJ‐db/db mice fed 16 % calories from BRS oil (BRS 100 %). After 10 weeks, n‐6/n‐3 fatty acid ratios were significantly (P < 0.05) lower in the livers and epididymal adipose tissues of the BRS 50 % and BRS 100 % mice than in the CON. Serum TNFα and IL‐6 were significantly (P < 0.05) lower in the BRS 50 % and BRS 100 % than in the CON. Serum IL‐10 was significantly (P < 0.05) higher in the BRS 100 % than the CON. In the liver and epididymal adipose tissue, mRNA levels of pro‐inflammatory markers in the BRS 50 % and BRS 100 % were lower than in the CON. Anti‐inflammatory markers were higher in the epididymal adipose tissues of the BRS 50 % and BRS 100 % than in the CON. In the epididymal adipose tissue, macrophage infiltration markers (F4/80 and CD68) and leptin mRNA were significantly (P < 0.05) lower in the BRS 50 % and BRS 100 % than in the CON. Results of this study suggest that BRS oil may have anti‐inflammatory effects in obese diabetic mice by ameliorating inflammatory responses.  相似文献   

15.
Nieminen P  Mustonen AM 《Lipids》2007,42(7):659-669
The mobilization of fatty acids (FA) is a selective process in humans, rodents and the few previously studied carnivores. The FA composition of and mobilization from different fat depots reflect the functions of adipose tissues, e.g. in energy storage or insulation. Sixteen farm-raised sables (Martes zibellina), a terrestrial mustelid, were assigned into a fed control group or fasted for 4 days. The FA composition of the sable was relatively similar to other previously studied mustelids. The masses of the different fat depots decreased by 28–55% during fasting. The subcutaneous (sc) and intraabdominal (iab) fats had a uniform FA composition and the sable could mobilize both sc and iab FA. 18:3n-3, 18:4n-3 and 16:1n-7 were effectively mobilized, while long-chain saturated (SFA) and monounsaturated FA (MUFA) increased in proportion. Relative mobilization (RM) correlated inversely with the FA chain length and Δ9-desaturation increased RM of several MUFA compared to SFA. The results reinforce the hypothesis that the terrestrial sable can utilize sc and iab fat depots as energy reserves during nutritional scarcity. The natural history of the species is an important determinant of the FA composition and RM between anatomically different fat depots.  相似文献   

16.
The high incidence of obesity is associated with an increasing risk of several chronic diseases such as cardiovascular disease, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Sustained obesity is characterized by a chronic and unsolved inflammation of adipose tissue, which leads to a greater expression of proinflammatory adipokines, excessive lipid storage and adipogenesis. The purpose of this review is to clarify how inflammatory mediators act during adipose tissue dysfunction in the development of insulin resistance and all obesity-associated diseases. In particular, we focused our attention on the role of inflammatory signaling in brown adipose tissue (BAT) thermogenic activity and the browning of white adipose tissue (WAT), which represent a relevant component of adipose alterations during obesity. Furthermore, we reported the most recent evidence in the literature on nutraceutical supplementation in the management of the adipose inflammatory state, and in particular on their potential effect on common inflammatory mediators and pathways, responsible for WAT and BAT dysfunction. Although further research is needed to demonstrate that targeting pro-inflammatory mediators improves adipose tissue dysfunction and activates thermogenesis in BAT and WAT browning during obesity, polyphenols supplementation could represent an innovative therapeutic strategy to prevent progression of obesity and obesity-related metabolic diseases.  相似文献   

17.
Conjugated linoleic acid (CLA) reduces body weight and adipose mass in a variety of species. The mechanisms by which CLA depletes adipose mass are unclear, but two independent microarray analyses indicate that in white adipose tissue (WAT), uncoupling protein 1 (UCP1) was among genes most changed by CLA. The objective of this study was to determine whether CLA induces ectopic expression of UCP1 in WAT, which may contribute to increased energy expenditure and weight loss. Six-week old, male ob/ob mice were fed either a control diet (CON) or a diet supplemented with 1.5% mixed isomer CLA (CLA) for 4 weeks. A third group of mice (LEPTIN) was fed the control diet and received daily injections of recombinant leptin as a positive control for adipose depletion in ob/ob mice. CLA did not alter several mRNA markers of lipid oxidation in epididymal white adipose tissue (eWAT) , but significantly increased carnitine palmitoyltransferase-1b (CPT1b) and PPAR gamma coactivator-1α (PGC1α) expression. Notably, CLA increased both mRNA and protein expression of uncoupling protein-1 (UCP1). β3-adrenoceptor mRNA and phosphorylated-p38 mitogen activated protein kinase (MAPK) protein levels were not affected by CLA, but were upregulated by LEPTIN. These data suggest the increased CPT1b, PGC1α, and UCP1, in WAT of CLA-fed mice may contribute to the depletion of adipose, and CLA does not appear to increase UCP1 through β3-adrenergic signaling. Future studies will focus on understanding how CLA increases mitochondrial oxidation and energy dissipation in white adipose tissue.  相似文献   

18.
Lysophosphatidic acid (lysoPtdOH), a lysophospholipid mediator, exerts diverse physiological effects, including angiogenesis, through its specific G‐protein‐coupled receptors. Previously, we showed that unfertilized hen egg white contains polyunsaturated fatty acid‐rich lysoPtdOH and lysophospholipase D (lysoPLD). Here, we examined whether lysoPtdOH was produced by lysoPLD in the presence and absence of a hen fertilized ovum and what the physiological role of lysoPtdOH in hen egg white is. Mass spectrometry showed that fertilized hen egg white contained about 8 μM lysoPtdOH before incubation with an ovum, mainly comprised of 18:1‐ (12.6 %), 18:2‐ (37.8 %) and 20:4‐molecular species (41.5 %). In an early gestation period, the lysoPtdOH was increased up to 9.6 μM, concomitant with a decrease in the level of polyunsaturated lysophosphatidylcholine (lysoPtdCho). Moreover, lysoPtdOH‐degrading activities were found in egg white and the vitelline membrane, showing that these enzymes control lysoPtdOH levels in egg white. In an egg yolk angiogenesis assay, two lysoPtdOH receptor antagonists, Ki16425 and N‐palmitoyl serine phosphoric acid (NASP), inhibited blood vessel formation induced by exogenously added 18:1‐lysoPtdOH and its precursor lysoPtdCho on the hen yolk sac. Ki16425 and NASP also inhibited blood vessel formation in the chorioallantoic membrane (CAM). Furthermore, the relatively higher levels of LPA1, LPA2, LPA4 and LPA6 mRNA were present in the yolk sac and CAM. These results suggest that lysoPtdOH produced from lysoPtdCho by the action of lysoPLD in hen egg white is involved in the formation of blood vessel networks through several lysoPtdOH receptors on various extraembryonic membranes, including the yolk sac membrane and CAM.  相似文献   

19.
Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is associated with an adverse metabolic profile including reduced postprandial thermogenesis. Although abnormalities in adipose tissue function have been widely reported in women with PCOS, less is known about direct effects of androgen on white and, particularly, brown adipocytes. The purpose of this study was to investigate the effect of the nonaromatizable androgen dihydrotestosterone (DHT) on (1) lipid accumulation and expression of adipogenic markers in immortalized mouse brown adipose cell lines (IMBATs), (2) mitochondrial respiration in IMBATs, (3) mitochondrial DNA content and gene expression, (4) expression of brown adipose tissue (BAT) markers and thermogenic activation. In addition, we profiled the relative levels of 38 adipokines secreted from BAT explants and looked at androgen effects on adipokine gene expression in both IMBATs and immortalized mouse white adipose (IMWATs) cell lines. Androgen treatment inhibited IMBAT differentiation in a dose-dependent manner, reduced markers of adipogenesis, and attenuated the β-adrenoceptor-stimulated increase in uncoupling protein-1 (UCP1) expression. In explants of mouse interscapular BAT, androgen reduced expression of UCP1, peroxisome proliferator-activated receptor-γ coactivator-1 (PCG-1) and Cidea. Significantly, as well as affecting genes involved in thermogenesis in BAT, androgen treatment reduced mitochondrial respiration in IMBATs, as measured by the Seahorse XF method. The results of this study suggest a role for excess androgen in inhibiting brown adipogenesis, attenuating the activation of thermogenesis and reducing mitochondrial respiration in BAT. Together, these data provide a plausible molecular mechanism that may contribute to reduced postprandial thermogenesis and the tendency to obesity in women with PCOS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号