首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
羧甲基纤维素钠/蒙脱土纳米复合材料的制备及结构表征   总被引:1,自引:0,他引:1  
采用溶液插层法制备羧甲基纤维素钠/蒙脱土纳米复合材料,研究不同羧甲基纤维素钠溶液pH值、反应温度、反应时间和羧甲基纤维素钠与蒙脱土的质量比等因素对纳米复合材料有机化程度的影响。用X射线衍射、红外光谱、扫描电镜及透射电镜对样品进行结构表征,用热重分析对样品热性能进行分析。结果表明:羧甲基纤维素钠通过破坏蒙脱土的晶体结构插层进入到蒙脱土层间,形成插层–剥离型纳米复合材料;与羧甲基纤维素钠相比,纳米复合材料的热稳定性有了很大提高。  相似文献   

2.
利用熔体插层法制备了纳米蒙脱土(PS插层)/丁苯橡胶复合材料,通过基本性能测试XRD测试、DMA测试和DSC测试对材料进行了结构的表征和纳米蒙脱土填充量不同时,复合材料的动态力学性能的变化,结果表明:蒙脱土在基体材料中实现了纳米级分散,并且当填充5份纳米蒙脱土时,复合材料具有较好的动态力学性能。  相似文献   

3.
采用熔融插层法制备了HDPE/PA6/OMMT纳米复合材料,用XRD、TEM和SEM对复合材料进行了表征。测试表明,聚合物大分子链已经插层进入蒙脱土片层之间,形成了插层型纳米复合材料。当蒙脱土添加量为3phr时,蒙脱土以完全剥离的形态分散在分散相PA6中;当用量增加至7phr时,使得两相的结构发生了逆转,即多组分的HDPE成为分散相,而PA6成为连续相。当蒙脱土用量为3phr时复合材料表现出最佳的机械性能。  相似文献   

4.
木质纤维素,经由超声细胞粉碎机纳米化,与蒙脱土进行复合反应,制备纳米木质纤维素/蒙脱土复合材料。探寻超声细胞粉碎机的超声功率、超声时间和超声介质氢氧化钠溶液的浓度以及复合反应时的反应温度、反应时间、两种原料掺杂比、复合反应体系氢氧化钠浓度对Mn、Zn两种离子吸附值的影响。结果表明,最佳制备条件为:超声功率1 080 W,超声时间150 min,超声介质Na OH浓度20%,原料掺杂比1∶1,反应体系氢氧化钠浓度12. 5%,复合反应温度50℃,复合反应时间4 h。  相似文献   

5.
木质纤维素,经由超声细胞粉碎机纳米化,与蒙脱土进行复合反应,制备纳米木质纤维素/蒙脱土复合材料。探寻超声细胞粉碎机的超声功率、超声时间和超声介质氢氧化钠溶液的浓度以及复合反应时的反应温度、反应时间、两种原料掺杂比、复合反应体系氢氧化钠浓度对Mn、Zn两种离子吸附值的影响。结果表明,最佳制备条件为:超声功率1 080 W,超声时间150 min,超声介质Na OH浓度20%,原料掺杂比1∶1,反应体系氢氧化钠浓度12. 5%,复合反应温度50℃,复合反应时间4 h。  相似文献   

6.
通过熔融共混法成功地制备了不同含量蒙脱土的尼龙11/蒙脱土纳米复合材料,利用X衍射(XRD)和透射电镜(TEM)研究了尼龙11/蒙脱土纳米复合材料的微观结构。结果表明,当蒙脱土质量分数小于2%时,形成了剥离型的纳米复合材料,当蒙脱土质量分数超过2%时形成了插层型的纳米复合材料。热重分析表明当蒙脱土质量分数为2%时,纳米复合材料的热分解温度比纯尼龙11提高了27℃。不同蒙脱土含量的纳米复合材料悬臂梁冲击强度均比纯尼龙11的高,但其拉伸强度在蒙脱土质量分数小于8%时降低,以后随蒙脱土含量的增加而提高。  相似文献   

7.
以碳酸钠改性后的钠基蒙脱土为载体、硫酸钛为钛源,采用水热法制备了TiO_2/蒙脱土复合材料。通过XRD、SEM和N_2吸附-脱附测试手段研究其微观结构和光谱学性能,并以刚果红溶液为模拟染料废水,研究其吸附性能。结果表明,TiO_2附着于蒙脱土表面,形成TiO_2/蒙脱土复合材料。该材料具有介孔结构,比表面积高达261.03m~2/g,在刚果红初始浓度为50mg/L、振荡时间为2h的条件下,TiO_2/蒙脱土对刚果红的吸附率为88.96%,极限吸附量可达344.8mg/g。  相似文献   

8.
利用熔体插层法制备了纳米蒙脱土(PS插层)/丁苯橡胶复合材料,对其进行了结构表征,讨论了复合材料的力学性能。研究结果表明,蒙脱土在基体材料中实现了纳米级分散;当填充5份纳米蒙脱土时,复合材料具有较好的力学性能。  相似文献   

9.
采用新疆夏子街钠基蒙脱土为原矿制备的有机蒙脱土和丙交酯,通过原位插层聚合方法,合成聚乳酸/有机蒙脱土纳米复合材料.通过对反应体系真空度、催化剂用量、反应温度、反应时间和OMMT 加入量等对工艺条件的研究,确定了最佳合成条件.结果为:反应体系真空度为0.085 MPa,催化剂用量为丙交酯质量的0.5%,聚合反应的温度控制在170 ℃,聚合反应时间7 h,OMMT加入量3%(质量含量).采用傅立叶红外光谱仪、X射线衍射仪、扫描电子显微镜、透射电子显微镜对聚乳酸/有机蒙脱土纳米插层复合材料的微观结构、相态等进行了表征和分析.  相似文献   

10.
PVC/聚烯烃/蒙脱土纳米复合材料的制备与性能研究   总被引:9,自引:0,他引:9  
将钠基蒙脱土(MMT)预先负载小分子单体丙烯酰胺(AM)和引发剂过氧化二异丙苯,然后与PVC/PE或PVC/PP在双辊上进行插层复合,制成了PVC/聚烯烃/蒙脱土纳米复合材料,对复合材料进行了表征。结果表明:吸附丙烯酰胺后蒙脱土的层间距有所增大,AM-MMT填充的复合材料属于插层型纳米复合材料,PP复合材料比PE复合材料更容易插层蒙脱土;纳米复合材料的拉伸强度和冲击强度都随AM-MMT用量的增加有一最大值;DSC显示插层效果较好的纳米复合材料的Tg较低。  相似文献   

11.
To further improve the adsorption capacity of chitosan (CTS), a series of novel chitosan/organo‐montmorillonite nanocomposites (CTS/OMMT) were synthesized and the adsorption abilities for Congo red (CR) investigated in this study. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the results indicated that an exfoliated nanostructure was formed in CTS/OMMT nanocomposites. Compared with the adsorption capacity of OMMT (192.4 mg g?1), CTS/OMMT with an amount of cetyltrimethylammonium bromide equal to 0.75 CEC of MMT and molar ratio of CTS to OMMT of 1:10 exhibited the higher adsorption capacity (290.8 mg g?1). The adsorption behaviours of OMMT and CTS/OMMT showed that the adsorption kinetics and isotherms were in good agreement with a pseudo‐second‐order equation and the Langmuir equation, respectively. The IR spectra revealed that a chemical interaction occurred between CTS/OMMT and CR. The adsorption capacity of CTS/OMMT nanocomposite was higher than that of other absorbents; this study suggested that the CTS/OMMT nanocomposite could be used as an adsorbent to remove CR dye from aqueous solution. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
In this work, a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder. The morphology and structure of the acidic montmoril o...  相似文献   

13.
Nanocomposite superabsorbents were synthesized by simultaneously solution copolymerization of acrylamide (AAm) and sodium acrylate (Na-AA) in the presence of carrageenan biopolymer and sodium montmorillonite (Na-MMt) nanoclay. Potassium persulfate (KPS) and methylenebisacrylamide (MBA) were used as initiator and crosslinker, respectively. The structure and morphology of the nanocomposites were investigated using XRD, FTIR, scanning electron microscopy (SEM), and TEM techniques. The influence of nanoclay and carrageenan contents as well as monomer weight ratios on the degree of swelling of nanocomposites was studied. The optimum water absorbency was obtained at 10 wt% of clay, 10 wt% of carrageenan, and 1:1 of monomers weight ratio. The obtained nanocomposites were examined to remove of crystal violet (CV) cationic dye from water. The effect of carrageenan and clay content on the speed of dye adsorption revealed that while the rate of dye adsorption is enhanced by increasing the clay content up to 14 wt% of clay, it was decreased as the carrageenan increased in nanocomposite composition. The results showed that the pseudo-second-order adsorption kinetic was predominated for the adsorption of CV onto nanocomposites. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The results corroborated that the experimental data fit the Freundlich isotherm the best.  相似文献   

14.
Novel hydrogel nanocomposites were synthesized by solution polymerization of acrylamide in the presence of carrageenan biopolymer and laponite RD clay. Laponite was used as an inorganic cross-linker. Ammonium persulfate was applied as an initiator. The structure and morphology of the nanocomposites were investigated using XRD, scanning electron microscopy, and transition electron microscopy techniques. The influence of both laponite nanoclay and the carrageenan content on the swelling degree of nanocomposites was studied and it was found that all nanocomposites containing carrageenan component have a high swelling degree compared to a nanocomposite without carrageenan. The obtained nanocomposites were examined to remove a cationic crystal violet (CV) dye from water. The effect of carrageenan and clay contents on the speed of dye adsorption revealed that while the rate of dye adsorption is enhanced by increasing the clay content, it was depressed as the carrageenan content increased in nanocomposite composition. The results showed that the pseudo-second-order adsorption kinetic was predominant in adsorption of CV onto nanocomposites. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The results indicated that the experimental data fit the Langmuir isotherm best. Maximum adsorption capacity was obtained for carrageenan-free nanocomposite with 79.8?mg?g?1 of adsorbed CV onto nanocomposite.  相似文献   

15.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

16.
A novel physicochemical crosslinked nanocomposite hydrogel based on polyvinyl alcohol (PVA) and natural Na‐montmorillonite (Na+‐MMT) was synthesized by chemical crosslinking of nanocomposite hydrogel followed by a freezing‐thawing process. The effects of physical crosslinking, as well as physicochemical crosslinking, on the structure, morphology, and properties (thermal, mechanical, swelling, and deswelling) of nanocomposite hydrogels were investigated and compared with each other. The structure and morphology of nanocomposites were studied by Fourier transform infrared, X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy techniques. The thermal and mechanical properties of nanocomposites that were affected by physical and physicochemical crosslinking were evaluated by thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, hardness test, and Water vapor transmission rate (WVTR) experiments. The results showed that the physicochemical crosslinking of a PVA nanocomposite leads to a reduction in crystallinity and melting temperature, as well as an increase in the Hardness and WVTR compared to a physically crosslinked PVA nanocomposite hydrogel. The swelling and deswelling experiments were performed using a gravimetric method, and it was shown that controlled crosslinking of PVA nanocomposite hydrogel with glutaraldehyde causes the swelling ratio to increase and the cumulative amount of water loss to decrease. The swelling (sorption) and deswelling (desorption) kinetics data for physically and physicochemical crosslinking of nanocomposite hydrogels were fitted with a fickian model. It is concluded that through control crosslinking of PVA nanocomposite can lead to a hydrogel with higher swelling capacity than that is in conventional PVA nanocomposite hydrogel. POLYM. COMPOS., 37:897–906, 2016. © 2014 Society of Plastics Engineers  相似文献   

17.
采用原位插层法制备了苯乙烯-马来酸酐共聚物/蒙脱土(SMA/MMT)纳米复合材料,采用X射线衍射研究了苯乙烯与马来酸酐的配比、蒙脱土用量、引发剂浓度、溶剂类型、聚合温度等因素对插层效果的影响。结果表明,当MMT的用量为3%(质量分数+下同)时,可制得剥离型的SMA/MMT纳米复合材料;当苯乙烯与马来酸酐的质量比为1:1,MMT用量为15%、引发剂用量为1%、以丁酮为溶剂、聚合温度为90℃时,可制备出部分剥离型的SMA/MMT纳米复合材料。  相似文献   

18.
We synthesized poly(?-caprolactone)/octadecyl amine-montmorillonite clay nanocomposite as a matrix polymer by solution intercalative method and new amphiphilic poly(maleic anhydrde-alt-1-octadecene)-g-poly(L-lactic acid)/Ag+-montmorillonite clay nanocomposite as a partner polymer by interlamellar graft copolymerization of lactic acid onto anhydride copolymer in the presence of silver salt of montmorillonite clay as catalyst-nanofiller. Novel polymer nanofibers were fabricated by electrospinning of matrix/partner blends with different volume ratios. The nanocomposites and nanofibers were investigated by Fourier transform infrared spectroscopy, thermal gravimetric analysis–differential scanning calorimetry, and scanning electron microscope–transmission electron microscope methods. The diameters, morphologies, and thermal behavior of fibers were strongly depended on the partner-polymer nanocomposites loadings. The fabricated biocompatible and biodegradable nanofibers can be utilized for biomedical and filtration applications.  相似文献   

19.
以三氯化铁(FeCl3)为氧化剂,十二烷基磺酸钠(SDS)为掺杂剂,通过原位聚合的方法制备了聚吡咯/海泡石(PPy/SEP)纳米复合材料。研究了吡咯(Py)用量、聚合时间、氧化剂用量以及掺杂剂用量对复合材料电导率的影响,确定了制备导电复合材料的工艺条件。结果表明,在Py用量(以SEP质量计)为25 %,聚合温度为0 ℃,聚合时间为12 h,FeCl3/Py摩尔比为2.3/1,SDS/Py摩尔比为1/5的条件下制备的PPy/SEP复合材料电导率为2.15 S/cm。采用透射电镜、红外光谱、X射线衍射及热分析表征纳米复合材料的形貌与结构。结果表明,制备的PPy/SEP纳米复合材料为具有核壳结构的一维纳米复合材料,且PPy以非晶态的形式存在于SEP表面。  相似文献   

20.
《Applied Clay Science》2010,48(3-4):242-248
Polyurethane (PU)/organo-montmorillonite nanocomposites were prepared by in situ polymerization of toluene diisocyanate and butanediol in the presence of different contents of organo-montmorillonite (9–18 mass%). Organo-montmorillonite were prepared by an ion exchange process of sodium montmorillonite with –NH3+ groups in polyoxyalkylene amine hydrochloride with two different molecular masses of 403 and 5000. To change the degree of surface modification, sodium montmorillonite was reacted with polyoxyalkylene amine hydrochloride in equivalent ratios (1:1 and 1:2). Dimethyl formamide (DMF) was used as a swelling agent for the prepared organo-montmorillonite. Different nanocomposite structures, depending on the molecular mass of the polyoxyalkylene and the degree of surface modification of montmorillonite were studied. The results of X-ray analysis and transmission electron microscopy showed that the organo-montmorillonite with polyoxyalkylene of higher molecular mass (T5000) produced the exfoliated PU nanocomposites; (T403), led to an intercalated structure. Nanocomposites exhibited lower water adsorption values and higher thermal stability than that of pure PU0. In addition, the hardness of the nanocomposites was measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号