首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The potential of Pleurotus ostreatus spent mushroom compost (PSMC) as a green biosorbent for nickel (II) biosorption was investigated in this study. A novel approach of using the half-saturation concentration of biosorbent to rapidly determine the uptake, kinetics and mechanism of biosorption was employed together with cost per unit uptake analysis to determine the potential of this biosorbent. Fifty per cent nickel (II) biosorption was obtained at a half-saturation constant of 0.7 g biosorbent concentration, initial pH in the range of 4-8, 10 min contact time, 50 mL 50 mg/L nickel (II) initial concentration. The experimental data were well fitted with the Langmuir isotherm model and the maximum nickel (II) biosorption was 3.04 mg/g. The results corresponded well to a second pseudo order kinetic model with the coefficient of determination value of 0.9999. Based on FTIR analysis, the general alkyl, hydroxyl or amino, aliphatic alcohol and carbonyl functional groups of biosorbent were involved in the biosorption process. Therefore, biosorption of nickel (II) must involve several mechanisms simultaneously such as physical adsorption, chemisorption and ion exchange. Cost comparison for PSMC with Amberlite IRC-86 ion exchange resin indicates that the biosorbent has the potential to be developed into a cost effective and environmentally friendly treatment system.  相似文献   

2.
This study evaluated the potential use of brown seaweed Sargassum sp to sequester lead and copper (Pb(II) and Cu(ll)) from urban runoff based on batch as well as column experiments. The equilibrium data exhibited Langmuir isotherms. The adsorption capacity of this seaweed was found to be 196.1 mgg(-1) and 84.0 mg g(-1) for Pb(ll) and Cu(ll), respectively, which are in good agreement with those values obtained for the aqueous solution (188.6 mg g(-1) for Pb(ll) and 86.9 mg g(-1) for Cu(II)). The functional group analysis of the seaweed using FTIR demonstrated that the carboxyl functional groups are mainly responsible for biosorption. The cation exchange capacity of the biosorbent was 2.25 meq/g. This observation suggested that ion exchange mechanism is predominantly responsible for the metal ion uptake. The column study showed that the highest bed height and the lowest flow rate result in a substantial enhancement of the metals uptake with the biosorption uptake capacities being 264.3 mg Pb(ll) g(-1) and 86.0 mg Cu(ll) g(-1). In the binary system, the biosorption capacity was observed to be 208.7 mg Pb(ll) g(-1) and 61.0 mg Cu(II) g(-1). The predicted breakthrough curves by the Thomas adsorption model gave a good fit of the experimental data with r2 ranging from 0.92 to 0.99.  相似文献   

3.
Adsorption of Cd(II) and Zn(II) ions in single solutions using extracellular polymeric substances (EPS) from activated sludge was investigated. Langmuir and Freundlich models were applied to describe metal adsorption. The results showed that EPS was an effective adsorbent for the zinc and cadmium ions from aqueous solution. The equilibrium metal uptake was increased with increasing the initial concentration of metal ion. Constants calculated from isotherms model showed that the maximum uptake capacity of cadmium was estimated to be 45 mg/g of Cd(II) and 80 mg/g of Zn(II). Both Langmuir and Freundlich isotherms were suitable for describing adsorption of Cd(II) by EPS, while the Langmuir isotherm equation fit the date of Zn(II) adsorption better, indicating that EPS adsorb Cd(II) and Zn(II) by different mechanisms.Analysis of FTIR spectra demonstrated that C-O-C of polysaccharides at 1,150-1,030 cm(-1), group of the amide(I), CH(2) group of the lipids, carboxyl and -OH groups of proteins and polysaccharides were involved in cadmium and zinc binding, of which the -OH groups and the C-O-C group of polysaccharides.  相似文献   

4.
In this study, the removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone was studied. Variables that affect the biosorption process such as pH, biosorbent dosage, initial metal ion concentration, contact time and temperature of solution were optimized. Experimental data were fitted to Langmuir, Freundlich, Dubinin Radushkevich and Temkin isotherm models to investigate the equilibrium isotherms. Pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were used to determine the biosorption mechanism. The thermodynamics of biosorption were studied for predicting the nature of biosorption. Experimental results showed that pine cone could be evaluated as an alternative precursor for removal of heavy metal ions from aqueous solutions, due to its high biosorption capacity, availability, and low cost.  相似文献   

5.
The passive removal of commonly used reactive dye and two heavy metals, from aqueous solutions by inexpensive biomaterial, yeast Rhodotorula muciloginosa biomass, termed biosorption, was studied with respect to pH, initial dye concentration and initial metal ion concentration. The biomass exhibited maximum dye and chromium(VI) uptake at pH 5 and pH 6 for nickel(II) in media containing 50 mg/L heavy metal and 50 mg/L remazol blue. It was found that the highest chromium(VI) removal yields measured were 31.3% for 49.0 mg/l initial chromium(VI) concentrations. The nickel(II) removal yield was 32.5% for 22.3 mg/L. Higher R. Blue removal yields were obtained, such as 77.1% for 117.5 mg/L. The maximum dye biosorption yield was investigated in medium with a constant dye (approximately 50 mg/L) and increasing heavy metal concentration. In the medium with 48.8, 103.8 and 151.8 mg/L chromium(VI) and constant dye concentration, the maximum chromium(VI) biosorption was 7.4, 9.3 and 17.1%, whereas the maximum dye biosorption was 61.6, 56.6 and 55.9%. The maximum nickel(II) biosorptions in the medium with dye were 38.1, 22.1 and 8.8% at 23.7, 37.7 and 60.1 mg/L nickel(II) concentrations. In these media, dye biosorptions were 93.9, 86.4 and 93.3%, respectively.  相似文献   

6.
《水科学与水工程》2021,14(4):286-294
Fruit peels, which are common agricultural byproducts, have been extensively used as abandoned or low-cost biosorbents to remove heavy metals. In this study, dragon fruit peel (DFP), rambutan peel (RP), and passion fruit peel (PFP) were used to remove Cu(II) ions from an aqueous solution. Concentrations of the adsorbed metal ions were determined using the atomic absorption spectroscopic method. Adsorption experiments were performed with different adsorbent dosages, pH values, contact times, and initial copper concentrations. The optimum set of conditions for biosorption of Cu(II) ions was found to be an adsorbent dosage of 0.25 g, a contact time of 180 min, an initial concentration of 100 mg/L, a pH value of 4 for RP and PFP, and a pH value of 5 for DFP. The adsorption conformed with the pseudo-second-order kinetic model. The adsorption data were consistent with the Langmuir and Freundlich isotherm models, but the best fit was with the Langmuir model. The Langmuir monolayer adsorption capacity values of DFP, RP, and PFP were calculated to be 92.593, 192.308, and 121.951 mg/g, respectively. RP showed a higher adsorption capacity of Cu(II) ions than PFP and DFP for all parameters. The results indicate that these biosorbents might be used to effectively adsorb Cu(II) ions from wastewater treatment plants.  相似文献   

7.
In this study an agricultural residue, sesame stalk, was evaluated for the removal of Ni(II) and Zn(II) metal ions from aqueous solutions. Biosorption studies were carried out at different pH, biosorbent dosage, initial metal ion concentrations, contact time, and solution temperature to determine the optimum conditions. The experimental data were modeled by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Langmuir model resulted in the best fit of the biosorption data. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and to evaluate rate constants. The best correlation was provided by the second-order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The experimental results showed that sesame stalk can be used as an effective and low-cost biosorbent precursor for the removal of heavy metal ions from aqueous solutions.  相似文献   

8.
N-carboxymethyl chitosan (NCMC) was synthesized by reacting chitosan with chloroacetic acid in water under triethylamine (Et(3)N) as catalyst. The chemical structures of NCMC were characterized by Fourier transform infrared (FT-IR) and hydrogen-1 nuclear magnetic resonance ((1)H-NMR) spectroscopy and confirmed that carboxymethylation occurred on the amino groups. Samples of NCMC were used for removal of Cu(II) from aqueous solution. The effects of degree of substitution of NCMC, initial pH value and adsorption kinetics on the adsorption were studied. Adsorption experiments showed that NCMC has a high adsorption speed and high adsorption capacity for remove Cu(II) from aqueous solution. The adsorption kinetics data were best fitted with the pseudo-second-order model. The experimental equilibrium data of Cu(II) on the NCMC were both fitted to the Langmuir model and Freundlich model, which revealed that the maximum capacity for monolayer saturation was 147.93 mg/g.  相似文献   

9.
A strategy for removal of heavy metals and phenol from wastewaters is proposed. It involves consecutive cation biosorption by fungi, phenol biodegradation by the yeast association Candida sp. 2326 + Candida sp. 2327 and regeneration. Copper and cobalt removal from aqueous solutions containing 80-120 mg/L phenol by biosorption, using Rhizopus archizus cells immobilized onto poly (vinyl alcohol), was investigated by conducting a series of batch experiments. The removal efficiencies were 81% for Cu and 5% for Co. The residual concentrations of Cu (1.9 mg/L) and of Co (9.5 mg/L) did not change the biodegradation dynamics of phenol. A quantitative biodegradation of 120 mg/L phenol proceeded within 22 h. After biodegradation of phenol, the removal efficiencies achieved by biosorption after regeneration were 90% for Cu and 44% for Co. It was found that copper and cobalt form positively charged complexes with phenol. This complex formation hinders the retention of Cu and Co by the biosorbent and reduces the uptake of their cations.  相似文献   

10.
A co-precipitation technique for nickel(II), chromium(II), manganese(II), lead(II) and zinc(II) with the aid of copper(II) cyclo-hexylmethyldithiocarbamate was established. The influences of some analytical parameters such as pH, sample volume, amounts of cyclo-hexylmethyldithiocarbamate and copper(II) on the recovery of metal ions were investigated. The heavy metals in the precipitate were determined by flame atomic absorption spectrophotometry. The range of detection limits for the heavy metals was 0.003-0.005 mg/L. The atomic spectrometric technique with co-precipitation procedure was successfully applied for the determination of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples from Ladipo stream in Lagos, Nigeria. The mean concentrations for these metals using co-precipitation procedure were not significantly different from corresponding concentrations obtained using spectrometric techniques without co-precipitation procedure.  相似文献   

11.
This study sought to assess sediment contamination by trace metals (cadmium, chromium, cobalt, copper, manganese, nickel, lead and zinc), to localize contaminated sites and to identify environmental risk for aquatic organisms in Wadis of Kebir Rhumel basin in the Northeast of Algeria. Water and surficial sediments (0-5 cm) were sampled in winter, spring, summer and autumn from 37 sites along permanent Wadis of the Kebir Rhumel basin. Sediment trace metal contents were measured by Flame Atomic Absorption Spectroscopy. Trace metals median concentrations in sediments followed a decreasing order: Mn > Zn > Pb > Cr > Cu > Ni > Co > Cd. Extreme values (dry weights) of the trace metals are as follows: 0.6-3.4 microg/g for Cd, 10-216 microg/g for Cr, 9-446 microg/g for Cu, 3-20 microg/g for Co, 105-576 microg/g for Mn, 10-46 microg/g for Ni, 11-167 microg/g for Pb, and 38-641 microg/g for Zn. According to world natural concentrations, all sediments collected were considered as contaminated by one or more elements. Comparing measured concentrations with American guidelines (Threshold Effect Level: TEL and Probable Effect Level: PEL) showed that biological effects could be occasionally observed for cadmium, chromium, lead and nickel levels but frequently observed for copper and zinc levels. Sediment quality was shown to be excellent for cobalt and manganese but medium to bad for cadmium, chromium, copper, lead, nickel and zinc regardless of sites.  相似文献   

12.
To understand better the pollution levels in the waters of the Nakivubo Channel and Lake Victoria, the concentrations of manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) were determined using convectional Energy Dispersive X‐ray Fluorescence Analysis (EDXRF) and Total X‐ray Fluorescence (TXRF) analysis. Particulate deposits were analysed for trace metals with a convectional EDXRF spectrometer. Extracted dissolved metals contents were analysed with Total Reflection X‐Ray Fluorescence. The analyses indicated higher copper concentrations in the filtrate samples collected at the rivermouths and inshore stations than on the particulate matter. Samples from battery manufacturing industry‐1 indicated copper concentrations in the filtrate exceeding the National Environmental management Authority (NEMA) drinking water standard of 1.0 mg L?1. Free zinc concentrations were measured for almost all the sampling sites, but at concentrations below the 3 mg L?1 NEMA standard. High concentrations of iron in the labile form measured at the lake shores were above NEMA drinking water standards of 0.3–3.5 mg L?1 in 2006, except for the April 2006 Murchison Bay rivermouth, and for low manganese concentrations in the lake waters. The iron and manganese concentrations on the particulate matter at the upstream end of the Channel, but were lower in the lake waters. Effluents from soap manufacturing industries exhibited elevated total iron concentrations, ranging from 19.038 ± 0.190 to 63.129 ± 6.248 mg L?1 throughout the 2‐year study period. The manganese concentrations were the highest for the battery manufacturing industry‐2 site in April 2006. The total iron and manganese concentrations were generally higher upstream along the Nakivubo Channel than in the lake waters. Cobalt and lead concentrations were below detection limits for most of the sampling sites. Generally, most metal concentrations along the Nakivubo Channel exceeded acceptable limits, illustrating the need for mitigation measures.  相似文献   

13.
In this work, the biosorption of As(V) from aqueous solutions by living cells of Bacillus cereus has been reported. The batch biosorption experiments were conducted with respect to biosorbent dosage 0.5 to 15 g/L, pH 2 to 9, contact time 5 to 90 min, initial concentration 1 to 10 mg/L and temperature 10 to 40 °C. The maximum biosorption capacity of B. cereus for As(V) was found to be 30.04 at pH 7.0, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data were fitted to linearly transformed Langmuir isotherms with R(2) (correlation coefficient) >0.99. Bacillus cereus cell surface was characterized using AFM and FTIR. The metal ions were desorbed from B. cereus using both 1 M HCl and 1 M HNO(3). The pseudo-second-order model was successfully applied to predict the rate constant of biosorption.  相似文献   

14.
In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.  相似文献   

15.
Aerobic granules to treat wastewater containing o-nitrophenol were successfully developed in a sequencing batch reactor (SBR) using activated sludge as inoculum. Stable aerobic granules were obtained with a clearly defined shape and diameters ranging from 2 to 6 mm after 122 days of operation. The integrity coefficient (IC) and granules density was found to be 98% and 1,054 kg m(-3) respectively. After development of aerobic granules, o-nitrophenols were successfully degraded to an efficiency of 78% at a concentration of 70 mg L(-1). GC-MS study revealed that the biodegradation of o-nitrophenol occurred via catechol via nitrobenzene pathway. Specific o-nitrophenol biodegradation rates followed the Haldane model and the associated kinetic parameters were found as follows: V(max) = 3.96 g o-nitrophenol g(-1)VSS(-1)d(-1), K(s) = 198.12 mg L(-1), and K(i) = 31.16 mg L(-1). The aerobic granules proved to be a feasible and effective way to degrade o-nitrophenol containing wastewater.  相似文献   

16.
The amount of pollutants produced during manufacturing processes of TFT-LCD (thin-film transistor liquid crystal display) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. The total amount of wastewater from TFT-LCD manufacturing plants is expected to exceed 200,000 CMD in the near future. Typically, organic solvents used in TFT-LCD manufacturing processes account for more than 33% of the total TFT-LCD wastewater. The main components of these organic solvents are composed of the stripper (dimethyl sulphoxide (DMSO) and monoethanolamine (MEA)), developer (tetra-methyl ammonium hydroxide (TMAH)) and chelating agents. These compounds are recognized as non-or slow-biodegradable organic compounds and little information is available regarding their biological treatability. In this study, the performance of an A/O SBR (anoxic/oxic sequencing batch reactor) treating synthetic TFT-LCD wastewater was evaluated. The long-term experimental results indicated that the A/O SBR was able to achieve stable and satisfactory removal performance for DMSO, MEA and TMAH at influent concentrations of 430, 800, and 190 mg/L, respectively. The removal efficiencies for all three compounds examined were more than 99%. In addition, batch tests were conducted to study the degradation kinetics of DMSO, MEA, and TMAH under aerobic, anoxic, and anaerobic conditions, respectively. The organic substrate of batch tests conducted included 400 mg/L of DMSO, 250 mg/L of MEA, and 120 mg/L of TMAH. For DMSO, specific DMSO degradation rates under aerobic and anoxic conditions were both lower than 4 mg DMSO/g VSS-hr. Under anaerobic conditions, the specific DMSO degradation rate was estimated to be 14 mg DMSO/g VSS-hr, which was much higher than those obtained under aerobic and anoxic conditions. The optimum specific MEA and TMAH degradation rates were obtained under aerobic conditions with values of 26.5 mg MEA/g VSS-hr and 17.3 mg TMAH/g VSS-hr, respectively. Compared to aerobic conditions, anaerobic biodegradation of MEA and TMAH was much less significant with values of 5.6 mg MEA/g VSS-hr and 0 mg TMAH/g VSS-hr, respectively. In summary, biological treatment of TFT-LCD wastewater containing DMSO, MEA, and TMAH is feasible, but appropriate conditions for optimum biodegradation of DMSO, MEA, and TMAH are crucial and require carefully operational consideration.  相似文献   

17.
More stringent water quality parameters in the Annex of the Water Framework Directive 2000/60/EC led to the introduction of "Maximum Tolerable Risk concentrations" (MTR-values) in the national legislation in The Netherlands (Vierde Nota Waterhuishouding). The MTR-values give limitations for the concentrations of e.g. heavy metals (HM's) but also for nutrients: Ntot < 2.2 mg/l, Ptot <0.15 mg/l. Investigations of HM removal during denitrifying flocculation filtration are conducted on the effluent of a typical modern Dutch WWTP. Because of low concentrations of HM's in the feed water, a cocktail of copper, nickel and zinc chloride (approximately equal 150-200 microg/l) is dosed before filtration. Preliminary jar tests and filtration tests with media filtration in pilot-scale and lab-scale are conducted. The results show high removal of nickel and zinc during jar tests with dosing of powdered activated carbon. During filtration tests at pilot-scale the bounded fraction of copper and zinc is highly removed. All three HM's are removed in the lab-scale activated carbon filter. After dosing, nickel is found mainly in the dissolved form, but it is removed in the lab-scale activated carbon filter. The removal of HM's via adsorption subsequently leads to a discussion on the toxicity of HM's and their bio-availability.  相似文献   

18.
The effect of Cu(II) ion on the dechlorination of carbon tetrachloride (CT) by Fe(II) associated with various iron oxides was investigated. Iron oxides including goethite, hematite, ferrihydrite and magnetite were selected as the model compounds. CT was dechlorinated to chloroform (CF) by 3 mM Fe(II) in iron oxide suspensions at pH 7.2. The dechlorination followed pseudo first-order kinetics and the pseudo first-order rate constants (k(obs)) were 0.048 h(-1), 0.0836 h(-1), 0.0609 h(-1) and 0.0144 h(-1) in goethite-, hematite-, ferrihydrite- and magnetite-amended systems, respectively. Addition of Cu(II) into systems increased the k(obs) for CT dechlorination significantly. A 3- to 120-fold increase in k(obs) relative to the systems without Cu(II) was observed when 0.5 mM Cu(II) was added to the Fe(II)-Fe(III) suspensions. The pH of the system is an important factor controlling the dechlorination rate of CT. The increase in concentrations of Fe(II) and iron oxides also enhanced the dechlorination efficiency and rate of CT. Moreover, a linear relationship between the k(obs) and Cu(II) concentration ranging between 0 and 0.4 mM was observed. Results obtained demonstrate the feasibility of using surface-bound iron species with Cu(III) for the detoxification of chlorinated solvents in the contaminated aquifers.  相似文献   

19.
The zebra mussel (Dreissena polymorpha) was utilized to assess the spatial distribution of three trace metals, cadmium, copper, and zinc, in the upper St. Lawrence River and to test the hypothesis that outflow from Lake Ontario influenced levels of these metals in near-shore biota. Zebra mussels, collected from twelve sites along the southern shore, were analyzed for total cadmium, copper, and zinc in their soft tissues. Total cadmium and copper concentrations were elevated at all sites compared to relatively uncontaminated waters and were highest at sites near the outflow of Lake Ontario and an industrial area farthest downstream. Total zinc concentrations approached levels found at uncontaminated sites. Concentrations were rarely related to animal size at any site. However, body burdens (metal content per individual) showed strong positive relationships with size. To facilitate comparisons among sites, body burdens were calculated for standard length (2.0 cm) mussels. Highest body burdens occurred at the outflow of the lake and at one relatively uncontaminated site downstream. Lowest body burdens occurred at sites in the industrial area, although concentrations in the tissues were high. Expected total cadmium concentrations in tissues were estimated using a bio-energetic based kinetic model. Observed cadmium concentrations were lower than predicted, suggesting that near-shore areas may comprise significant depositional areas subject to enrichment with contaminants carried in the outflow from Lake Ontario. Long-term studies of inter-annual variability in metal concentrations, metal burdens, and growth rates should enhance the usefulness of D. polymorpha as a biomonitor and help in understanding the fate of trace metals in the upper St. Lawrence River.  相似文献   

20.
This study aimed to investigate the biosorption potential of Na_2 CO_3-modified Aloe barbadensis Miller(Aloe vera) leaf(MABL) powder for removal of Ni(II) ions from a synthetic aqueous solution. Effects of various process parameters(pH, equilibrium time, and temperature) were investigated in order to optimize the biosorptive removal. The maximum biosorption capacity of MABL was observed to be 28.986 mg/g at a temperature of 303 K, a biosorbent dose of 0.6 g, a contact time of 90 min, and a pH value of 7. Different kinetic models(the pseudo-first-order,pseudo-second-order, Elovich, and intraparticle diffusion models) were evaluated. The pseudo-second-order kinetic model was found to be the best fitted model in this study, with a coefficient of determination of R~2 = 0.974. Five different isotherm models(the Langmuir, Freundlich,Temkin, Dubinin-Radushkevich, and Brunauer-Emmett-Teller(BET) models) were investigated to identify the best-suited isotherm model for the present system. Based on the minimum chi-square value(x~2 = 0 027) and the maximum coefficient of determination(R~2 = 0.996), the Langmuir isotherm model was found to represent the system well, indicating the possibility of monolayer biosorption. The sticking probability(S*) was found to be 0.41, suggesting a physisorption mechanism for biosorption of Ni(II) on MABL. The biosorbent was characterized using Fourier-transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), zeta potential, and BET surface area, in order to understand its morphological and functional characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号