首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
《水科学与水工程》2020,13(4):265-274
Rivers in arid and semi-arid regions are threatened by droughts and climate change. This study focused on a comparative evaluation of the impacts of climate change and droughts on the vulnerability of river flows in three basins with diverse climates in Iran. The standardized precipitation-evapotranspiration index (SPEI) and precipitation effectiveness variables (PEVs) extracted from the conjunctive precipitation effectiveness index (CPEI) were used to analyze the drought severity. To investigate hydrological droughts in the basins, the normalized difference water index (NDWI) and the streamflow drought index (SDI) were calculated and compared. The effects of droughts were assessed under various representative concentration pathway (RCP) scenarios. Changes in the number of wet days and precipitation depth restricted hydrological droughts, whereas an increasing number of dry days amplified their severity. The projected increases in dry days and precipitation over short durations throughout a year under future climate scenarios would produce changes in drought and flood periods and ultimately impact the frequency and severity of hydrological droughts. Under RCP 4.5, an increase in the frequencies of moderate and severe meteorological/hydrological droughts would further affect the Central Desert Basin. Under RCPs 2.6 and 8.5, the frequencies of severe and extreme droughts would increase, but the drought area would be smaller than that under RCP 4.5, demonstrating less severe drought conditions. Due to the shallow depths of most rivers, SDI was found to be more feasible than NDWI in detecting hydrological droughts.  相似文献   

2.

This study aims to investigate the effect of climate change on the probability of drought occurrence in central Iran. To this end, a new drought index called Multivariate Standardized Drought Index (MSDI) was developed, which is composed of the Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Soil Moisture Index (SSI). The required data included precipitation, temperature (from CRU TS), and soil moisture (from the ESA CCA SM product) on a monthly time scale for the 1980–2016 period. Moreover, future climate data were downloaded from CMIP6 models under the latest SSPs-RCPs emission scenarios (SSP1-2.6 and SSP5-8.5) for the 2020–2056 period. Based on the normalized root mean square error (NRMSE), Cramer-von mises statistic (Sn), and Nash Sutcliffe (NS) evaluation criteria, the Galambos and Clayton functions were selected to derive copula-based joint distribution functions in both periods. The results showed that more severe and longer droughts will occur in the future compared to the historical period and in particular under the SSP5-8.5 scenario. From the derived joint return period, a drought event with defined severity or duration will happen in a shorter return period as compared with the historical period. In other words, the joint return period indicated a higher probability of drought occurrence in the future period. Moreover, the joint return period analysis revealed that the return period of mild droughts will remain the same, while it will decrease for extreme droughts in the future.

  相似文献   

3.
A Water Balance Derived Drought Index for Pinios River Basin, Greece   总被引:1,自引:0,他引:1  
This study estimates hydrological drought characteristics using a water balance derived drought index in Pinios river basin, Thessaly, Greece. The concept of hydrological management at subwatershed scale has been adopted because it encompasses the areal extent of a drought event. Fourteen (14) sub-watersheds of Pinios river basin were delineated according to the major tributaries of Pinios river using GIS. For the assessment of hydrological drought, because none of the sub-watersheds have flow gauge stations at their outlets, a six-parameter monthly conceptual water balance model (UTHBAL model), has been applied regionally to simulate runoff for the period October 1960?CSeptember 2002. The synthetic runoff was normalized through Box-Cox transformation and standardized to the mean runoff to produce the water balance derived drought index for hydrological drought assessment. The standardized precipitation index (SPI) at multiple time scales and four indices of the Palmer method (i.e. PDSI, WPLM, PHDI and the Palmer moisture anomaly Z-index) were also calculated to assess hydrological droughts. The results showed that the water balance derived drought index is a good indicator of hydrological drought in all sub-watersheds, since is capable to quantify drought severity and duration. Furthermore, the drought index provides guidance on the selection of an appropriate meteorological drought index for operational hydrological drought monitoring. Hence, SPI at 3- and 6-month timescales and the WPLM could be used along with the water balance derived drought index in risk and decision analyses at the study area.  相似文献   

4.
This paper aims at investigating the combined impacts of basin-wide multi-year droughts and upstream human-induced activities on current and future potential development of a semi-arid transboundary basin. The approach is based on the drought analysis through three widely used drought indices (Standardised Drought Index- SPI, Reconnaissance Drought Index - RDI and Streamflow Drought Index- SDI), coupled with the current and future conceivable man-made changes upstream, taking also into account the effects of climate change. As a representative case, the Diyala river basin, shared between Iraq and Iran, is selected. A close examination of the climate trends in the study area exhibits that the basin points to be drier, with a decreasein precipitation and rise in the rates of temperature and potential evapotranspiration. The comparison between RDI and SDI indicates the cumulative drought effects on runoff during recent multi-year droughts episodes (1999–2001 and 2008–2009), which crippled the socio-economic activities and influenced the environmental system. Further, the results reveal that the combined impacts of multi-year droughts at basin scale and the river damming, water abstraction and water diversion works upstream have significant effects on water availability, especially at the middle and lower parts of the basin, with impacts on the security of the irrigated agriculture and public water supply, contributing to displacement and tribal conflicts. The projected climate change conditions along with the water withdrawal schemes upstream, which will put into operation in the foreseeable future, are expected to increase the vulnerability of water security in the portion of the basin that lies in the downstream country.  相似文献   

5.
Understanding the characteristics of historical droughts will benefit water resource managers because it will reveal the possible impacts that future changes in climate may have on drought, and subsequently, the availability of water resources. The goal of this study was to reconstruct historical drought occurrences and assess future drought risk for the drought-prone Blue River Basin in Oklahoma, under a likely changing climate using three types of drought indices, i.e., Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI) and Standardized Runoff Index (SRI). No similar research has been conducted in this region previously. Monthly precipitation and temperature data from the observational period 1950?C1999 and over the projection period 2010?C2099 from 16 statistically downscaled Global Climate Models (GCM) were used to compute the duration, severity, and extent of meteorological droughts. Additionally, soil moisture, evapotranspiration (ET), and runoff data from the well-calibrated Thornthwaite Monthly Water Balance Model were used to examine drought from a hydrological perspective. The results show that the three indices captured the historical droughts for the past 50?years and suggest that more severe droughts of wider extent are very likely to occur over the next 90?years in the Blue River Basin, especially in the later part of the 21st century. In fact, all three indices display lower minimum values than those ever recorded in the past 50?years. This study also found that SRI and SPI (PDSI) had a correlation coefficient of 0.81 (0.78) with a 2-month (no appreciable) lag time over the 1950?C2099 time period across the basin. There was relatively lower correlation between SPI and PDSI over the same period. Although this study recommends that PDSI and SRI are the most suitable indices for assessing future drought risks under an increasingly warmer climate, more drought indices from ecological and socioeconomic perspectives should be investigated and compared to provide a complete picture of drought and its potential impacts on the dynamically coupled nature-human system.  相似文献   

6.
基于 1961—2019 年气象观测数据和 CMIP6 模式数据,利用标准化降水蒸散指数(standardized?precipitation evapotranspiration?index,SPEI)计算南水北调中线水源区和受水区的干旱指数,并利用经验正交分析法、主成分分 析法和 Copula 函数法,对水源区与受水区的干旱演变规律进行分析,揭示干旱遭遇的联合概率分布,并对未来干 旱遭遇进行预估。研究结果表明:水源区和受水区干旱事件遭遇频繁,1965—1971 年和 1987—2005 年均出现较 为严重的干旱遭遇事件,同时在 1970 年代中后期至 1985 年前后,出现了长期明显的区域差异性;水源区和受水区 中旱和重旱的联合重现期分别约为 18 年一遇(5.51%)和 123 年一遇(0.81%),两地同时出现极端干旱的重现期约 为 323 年一遇(0.31%);不同气候情景下以年尺度 SPEI 指数,对南水北调中线水源区和受水区的未来干旱事件预 估表明,未来水源区和受水区在 SSP1-2.6 情景下干旱遭遇次数相对较少,而在 SSP2-4.5 情景下的 2034—2036 年、 2044—2045 年以及在 SSP5-8.5 情景下的 2032—2033 年、2068—2070 年,将有可能发生较严重的干旱遭遇事 件。  相似文献   

7.
In recent years, droughts with increasing severity and frequency have been experienced around the world due to climate change effects. Water planning and management during droughts needs to deal with water demand variability, uncertainties in streamflow prediction, conflicts over water resources allocation, and the absence of necessary emergency schemes in drought situations. Reservoirs could play an important role in drought mitigation; therefore, development of an algorithm for operation of reservoirs in drought periods could help to mitigate the drought impacts by reducing the expected water shortages. For this purpose, the probable drought’s characteristics and their variations in response to factors such as climate change should be incorporated. This study aims at developing a contingency planning scheme for operation of reservoirs in drought periods using hedging rules with the objective of decreasing the maximum water deficit. The case study for evaluation of the performance of the proposed algorithm is the Sattarkhan reservoir in the Aharchay watershed, located in the northwestern part of Iran. The trend evaluations of the hydro-climatic variables show that the climate change has already affected streamflow in the region and has increased water scarcity and drought severity. To incorporate the climate change study in reservoir planning; streamflow should be simulated under climate change impacts. For this purpose, the climatic variables including temperature and precipitation in the future under climate change impacts are simulated using downscaled GCM (General Circulation Model) outputs to derive scenarios for possible future drought events. Then a hydrological model is developed to simulate the river streamflow, based on the downscaled data. The results show that the proposed methodology leads to less water deficit and decreases the drought damages in the study area.  相似文献   

8.

Climate change has made many alterations to the climate of earth, including hydro-climatic extreme events. To investigate the impact of climate change on hydro-meteorological droughts in the Kamal-Saleh dam basin in Markazi province, Iran, proportional to future climate conditions, a new and comprehensive index was developed with the aim of accurately estimating drought in a more realistic condition. This aggregate drought index (ADI) represented the main meteorological and hydrological characteristics of drought. Temperature and precipitation projections for future climates were simulated by five CMIP5 models and downscaled over the study area during 2050s (2040–2069) and 2080s (2070–2099) relative to the baseline period (1976–2005). By fitting five univariate distribution functions on drought severity and duration, proper marginal distributions were selected. The joint distribution of drought severity and duration was chosen from five types of copula functions. The results revealed that in future, severe droughts are expected to frequently occur in a shorter period.

  相似文献   

9.

A better understanding of climate change impacts on water security beyond climate variability is of critical importance to tackle water vulnerabilities exacerbated by increasing extreme weather events. Thus, studies on water security in a changing climate help decision-makers to overcome existing political and socioeconomic challenges worldwide. In this study, future water security of two basins was assessed under climate change and demand scenarios by contrasting water demand with probabilistic levels of water availability to identify possible drivers of insecurity. The Guariroba and Jaguari basins are the main sources for supplying water to Campo Grande city and the São Paulo Metropolitan Region, respectively. The physically-based SWAT+?model was calibrated to simulate the basins’ hydrological response to three climate change scenarios from a CMIP6 multimodel ensemble: SSP2-4.5 (medium forcing), SSP3-7.0 (high forcing), and SSP5-8.5 (high forcing). The Guariroba basin already presented scarcity indices close to the security threshold in the baseline period. The imbalance between availability and demand was the main driver of water insecurity in this basin. Despite showing a low scarcity risk in the Jaguari basin in the baseline, this risk considerably increased in the future periods due to a decrease in precipitation. A reduction in water demand of 20% by 2070 was not sufficient to improve water security in both basins. These findings indicate that a lack of policies for adapting demand to a changing availability exacerbates hydrological droughts. More stringent measures to balance water availability and demand are critical for improving water security in an uncertain future.

  相似文献   

10.
Zhou  Jiawei  Chen  Xiaohong  Xu  Chuang  Wu  Pan 《Water Resources Management》2022,36(6):1937-1953

Socioeconomic drought occurs when a water shortage is caused by an imbalance between the supply and demand of water resources in natural and human socioeconomic systems. Compared with meteorological drought, hydrological drought, and agricultural drought, socioeconomic drought has received relatively little attention. Hence, this study aims to construct a universal and relatively simple socioeconomic drought assessment index, the Standardized Supply and Demand Water Index (SSDWI). Taking the Jianjiang River Basin (JJRB) in Guangdong Province, China, as an example, we analyzed the socioeconomic drought characteristics and trends from 1985 to 2019. The return periods of different levels of drought were calculated. The relationships among socioeconomic, meteorological, and hydrological droughts and their potential drivers were discussed. Results showed that: (1) SSDWI can assess the socioeconomic drought conditions well at the basin scale. Based on the SSWDI, during the 35-year study period, 29 socioeconomic droughts occurred in the basin, with an average duration of 6.16 months and average severity of 5.82. Socioeconomic droughts mainly occurred in autumn and winter, which also had more severe droughts than other seasons. (2) In the JJRB, the joint return periods of “∪” and “∩” for moderate drought, severe drought, and extreme drought were 8.81a and 10.81a, 16.49a and 26.44a, and 41.68a and 91.13a, respectively. (3) Because of the increasing outflow from Gaozhou Reservoir, the occurrence probability of socioeconomic drought and hydrological drought in the JJRB has declined significantly since 2008. Reservoir scheduling helps alleviate hydrological and socioeconomic drought in the basin.

  相似文献   

11.
A comparison study of meteorological, hydrological and agricultural drought responses to climate change resulting from different General Circulation Models (GCMs), emission scenarios and hydrological models is presented. Drought variations from 1961–2000 to 2061–2100 in Huai River basin above Bengbu station in China are investigated. Meteorological drought is recognized by the Standardized Precipitation Index (SPI) while hydrological drought and agricultural drought are indexed with a similar standardized procedure by the Standardized Runoff Index (SRI) and Standardized Soil Water Index (SSWI). The results generally approve that hydrological and agricultural drought could still pose greater threats to local water resources management in the future, even with a more steady background to meteorological drought. However, the various drought responses to climate change indicate that uncertainty arises in the propagation of drought from meteorological to hydrological and agricultural systems with respect to alternative climates. The uncertainty in hydrological model structure, as well as the uncertainties in GCM and emission scenario, are aggregated to the results and lead to much wider variations in hydrological and agricultural drought characteristics. Our results also reveal that the selection of hydrological models can induce fundamental differences in drought simulations, and the role of hydrological model uncertainty may become dominating among the three uncertainty sources while recognizing frequency of extreme drought and maximum drought duration.  相似文献   

12.
Climate change and human activity are the two major drivers that can alter hydrological cycle processes and influence the characteristics of hydrological drought in river basins. The present study selects the Wei River Basin (WRB) as a case study region in which to assess the impacts of climate change and human activity on hydrological drought based on the Standardized Runoff Index (SRI) on different time scales. The Generalized Additive Models in Location, Scale and Shape (GAMLSS) are used to construct a time-dependent SRI (SRIvar) considering the non-stationarity of runoff series under changing environmental conditions. The results indicate that the SRIvar is more robust and reliable than the traditional SRI. We also determine that different driving factors can influence the hydrological drought evolution on different time scales. On shorter time scales, the effects of human activity on hydrological drought are stronger than those of climate change; on longer time scales, climate change is considered to be the dominant factor. The results presented in this study are beneficial for providing a reference for hydrological drought analysis by considering non-stationarity as well as investigating how hydrological drought responds to climate change and human activity on various time scales, thereby providing scientific information for drought forecasting and water resources management over different time scales under non-stationary conditions.  相似文献   

13.
气候变化对黄河水资源的影响   总被引:12,自引:1,他引:11  
王国庆  王云璋  尚长昆 《人民黄河》2000,22(9):40-41,45
首先简要介绍了黄河月水文模型,然后在分析气温变化对黄河流域发能力影响的基础上,采取假定气候方案,分析了黄河主要产流区径流对气候变化的敏感性,最后根据全球气候模型GCMs输出的降水、气温结果、估算了温室效应对主要产流区水资源的影响,并进一步分析得出:黄河未来几十年径流量呈减少趋势,汛期径流和年径流的约分别减落25.4和35.7亿m^3,其中兰州以上减少最多,占总减少量的一半以上。  相似文献   

14.
It is generally recognized that climate change will affect the discharge regime of the Rhine River. Especially the anticipated increase in extreme river discharges (floods and droughts) poses serious problems to water management, both with regard to water quantity and water quality. Water quality effects of climate change are not sufficiently recognized, however. The purpose of this study is to investigate the impact of droughts on the water quality of the River Rhine. Time series of river flow and water quality were analyzed for station Lobith, located at the Dutch-German border. Over the past three decades, three major droughts were identified, occurring in the years 1976, 1991, and 2003. The water quality during these dry years was compared with the water quality in reference years, characterized by average hydrological conditions and similar chemical pollution. Four groups of water quality parameters were investigated: 1, general variables (water temperature, dissolved oxygen, chlorophyll-a); 2, major ions (chloride, sodium, sulfate, fluoride, bromide); 3, nutrients; and 4, heavy metals. It was found that water quality is negatively influenced by (summer) droughts, with respect to water temperature, eutrophication, major ions and heavy metals. Effects on nutrient concentrations were small for ammonium and could not be demonstrated for nitrate, nitrite and phosphate. The decline in water quality during summer droughts is both related to the high water temperatures and to low river discharges (limited dilution of the chemical load from point sources). Moreover, the impact of the 1976 drought on water quality was far more important than that of the 2003 drought, indicating that the impact of droughts on water quality will be greater when the water quality is already poor.  相似文献   

15.
Abstract

Coping with hydrological extremes, floods, and droughts has been a major concern since the dawn of human civilization. Freshwater, a necessary condition of life and a raw material used in very high volumes in virtually every human activity, is becoming increasingly scarce. Water use has risen considerably in the last hundred years at a pace exceeding the population growth. Therefore, societies are increasingly vulnerable to droughts and water deficits. Although the 21st century is heralded as the age of water scarcity, flood losses continue to grow. Increasing global vulnerability results to a large extent from soaring anthropopressure: settlements in hazardous locations and adverse land use changes. Deforestation and urbanization lead to reduction of the storage volume and higher values of runoff coefficient. In more wealthy countries, it is the material flood losses that continue to grow, while the number of fatalities goes down. Advanced flood preparedness systems can save lives and reduce human suffering. In some regions of the world, long-term forecasts (e.g., ENSO) help improve the preparedness for hydrological extremes, both floods and droughts, and hopefully will even more so in the future. Scenarios for future climate indicate the possibility of sharpening the extremes and changes of their seasonality. For instance, in Western Scotland and Norway, an increase of winter floods has already been observed. According to recent assessments, there is a growing risk of summer droughts in the Mediterranean region: less precipitation in summer and higher temperature will coincide, causing higher evapo-transpiration and less runoff. Fighting with floods and droughts has not been quite successful. Humans have to get used to the fact that extreme hydrological events are natural phenomena that will continue to occur. While doing one's best to improve the preparedness systems, it is necessary to learn to live with hydrological extremes.  相似文献   

16.
Abstract

Human activities and climatic change have greatly impacted hydrological cycles and water resources planning in the Yellow River basin. In order to assess these impacts, a semi-distributed monthly water balance model was proposed and developed to simulate and predict the hydrological processes in the middle and lower Yellow River basin. GIS techniques were used as a tool to analyze topography, river networks, land-use, human activities, vegetation, and soil characteristics. The model parameters were calibrated in 35 gauged sub-basins in the middle Yellow River, and then the relationships between the model parameters and the basin physical characteristics were established. A parameterization scheme was developed in which the model parameters were estimated for each grid element by regression and optimization methods. Based on the different outputs of general circulation models (GCMs) and regional climate models (RCMs), the sensitivities to global warming of hydrology and water resources for the Yellow River basin were studied. The proposed models are capable of producing both the magnitude and timing of runoff and water resources conditions. The runoffs are found to be very sensitive to temperature increases and rainfall decreases. Results of the study also indicated that runoff is more sensitive to variation in precipitation than to increase in temperature. The additional uncertainty of climate change has posed a challenge to the existing water resources management practices, and the integration of water resources management will be necessary to enhance the water use efficiency in the Yellow River basin.  相似文献   

17.
基于东北地区86个国家基本气象站1960年-2014年逐月降水量和平均气温数据,计算不同时间尺度下的标准化降水蒸散指数(SPEI),分析不同时间尺度下东北地区季节、年际以及年代际干旱时空分布特征,并与实际干旱成灾面积进行对比分析,验证SPEI在东北地区干旱评估中的适用性。结果表明:春季、夏季和冬季重旱发生频率随时间尺度增大而升高;中旱发生频率随时间尺度增大而降低。近55年东北地区旱涝情势交替出现,干旱频率随年代际变化逐渐升高,干旱程度逐渐加重。整体来看,随时间尺度增加,极旱发生范围逐渐扩大。东北三省在春季、夏季和秋季均有不同频率的干旱事件发生;冬季吉林和辽宁无极旱发生;黑龙江中部无重旱发生。  相似文献   

18.
为建立水文干旱预测系统,采用灰色系统理论中灰关联度分析的方法,对枯水期径流量的预估模式进行了探讨,并提出用层次分析法来考虑各影响因子对径流量的不同影响程度,这一尝试为水文干旱的预测提供了条件。  相似文献   

19.
为了评估气候变化对怒江流域干旱演变的影响,本研究建立了GBHM-NJ分布式水文模型,利用实测站点资料率定参数并验证模型精度,模拟了1961—2010年长时间序列流域水文过程,并分别采用标准化降水指数(SPI)和标准化径流指数(SSI)分析了流域气象干旱和水文干旱的时空演变特点。结果表明:(1)GBHM-NJ模型能较好地模拟怒江流域的径流过程和水文响应的空间特征。(2)1961—2010年间,怒江流域发生气象干旱的频率、覆盖面积和强度呈增加趋势,其中1994年和2009年气象干旱最为严重。(3)在空间上,怒江流域的年度气象干旱频率约为28%,中游地区干旱频率比较高、主要分布在左贡站和八宿站附近,上游地区次之,下游地区相对较低。(4)水文干旱进入20世纪90年代和21世纪以后明显增强,年尺度干旱以轻旱为主,季尺度干旱特旱多发生在秋冬季。总之,气候变化环境下怒江流域干旱呈现增强趋势。  相似文献   

20.
基于标准化降水蒸散指数(SPEI)和标准化径流指数(SRI),比较了黄河流域气象干旱和水文干旱的时空分布差异,分析了二者时间尺度上的关联性,并选取典型干旱事件进一步探讨了两种干旱类型的传递关系。结果表明:两种干旱类型空间上有相似的趋势和频次,但在黄河源区和黄河中南部(渭河流域)差异显著,其干旱历时均有随年代延长的趋势,水文干旱历时增长尤为明显;在时间尺度上,SPEI与SRI在大部分区域基本一致,但在黄河源区和渭河流域差异较大,尤其是短时间尺度上差异更显著;气象干旱与水文干旱并非一一对应,多场短历时间断气象干旱受时滞效应、异常气象波动等影响,可能引发一场长历时连续水文干旱或多场短历时间断水文干旱,一场长历时连续气象干旱强度衰减可能引发多场短历时间断水文干旱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号