首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long afterglow phosphor CaAl2Si2O8:Eu^2+ , Dy^3+ was prepared by a sol-gel method. The sol-gel process and the structure of the phosphor were investigated by means of X-ray diffraction analysis (XRD). It is found that the single anorthite phase formed at about 1000 %, which is 300 % lower than that required for the conventional solid state reaction. The obtained phosphor powders are easier to grind than those of solid state method and the partical size of phosphor has a relative narrow distribution of 200 to 500 nm. The photoluminescence and afterglow properties of the phosphor were also characterized. An obvious blue shift occurs in the excitation and emission spectra of phosphors obtained by sol-gel and solid state reaction methods. The change of the fluorescence spectra can be attributed to the sharp decrease of the crystalline grain size of the phosphor resulted from the sol-gel technique.  相似文献   

2.
Nanoscaled SrAl12O19:Er3+ and SrAl12O19:Yb3+,Er3+ phosphors were synthesized by a combustion method.The emission intensities of every sample were compared by a new method with the emission of codoped Gd3+ ions as a reference.Compared with their bulk material prepared by the solid-state reaction method,a higher Er3+ quenching concentration,as high as 20%,was observed in the nanoscaled phosphors for both visible(VIS) and near infrared(NIR) emissions.The higher quenching concentration in both VIS and NIR regions for nanoscaled samples are related to the structure characteristics of the nano particles.The influence of the introduction of Yb3+ ions on the emission spectra intensity was also investigated and discussed.  相似文献   

3.
Ultrafine Y0.95-xGdxEu0.05Al3(BO3)4 phosphors with different Gd3+ concentrations were prepared by a solution combustion method, and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). Results showed that the pure phase of YAl3(BO3)4 was obtained at 1000 oC and the prepared particle size varied with calcining temperatures. Photoluminescence spectra indicated that the dominant emission peak was observed at 612 nm due to the 5D0→7F2 transition of Eu3+. The luminescence intensity of ...  相似文献   

4.
CaGdAlO4 : Eu^3+ powder phosphors were prepared using citrate sol-gel (CSG), haft-dry and half-wet (HDW) and solid state (SS) methods, respectively. X-ray diffraction results confirm the formation of CaGdAlO4:Eu^3+ at 900 % (CSG), 1200℃ (HDW) and 1400℃ (SS), respectively. Field emission scan electron microscopy (FE-SEM) images show that the CaGdAlO4:Eu^3+ powder prepared by the CSG and HDW method has an elliptical shape and that prepared under the SS method has a flaky shape. Upon excitation with 280 nm UV light, all the CaGdAlO4: Eu^3+ powders show bright red emission on account of the 4f-4f transitions of the Eu^3+ ions. Moreover, the size of the phosphor particles and the emission intensity increase with the increase of calcined temperature. At the same calcination temperature of 1400 ℃, the ^5D0→^7F2 emission intensity of the sample prepared by HDW method is the highest. Stark components of the ^5D0→^7FJ emission transitions, both at room temperature and at a low temperature, reveal that the Eu^3+ ions occupy only one site with non-centrosymmetry in the crystals.  相似文献   

5.
Strontium doped lanthanum manganite (LSM) powders were synthesized by three different routes: azeotropic distillation, sol-gel and solid state reaction respectively. The LSM samples, made by azeotropic distillation and sol-gel methods were prepared by firing at 1000 ℃ for 6 h, and the LSM sample, made by solid state reaction method was produced by sintering at 1400 ℃ for 18 h. The samples were characterized by XRD, TEC, SEM, EIS and polarization performance analysis. The results show that all the samples made by different methods have pure orthorhombic LSM phase, however exhibit different micro structure and electrochemical characterization, which relates to the different synthesis methods. The solid state reaction method produces the samples with larger particle size compared with azeotropic distillation and sol-gel methods. The powders made by azeotropic distillation method have less agglomerated particles compared with that made by sol-gel method because the precursor in the former is dispersed in n-butanol before sintering. The polarization current density of powder made by azeotropic distillation method was twice of that made by sol-gel method and four times of that made by solid state reaction method. The values of polarization resistance (Rp) are 0.35 Ω·cm2 for the cathode synthesized by azeotropic distillation route, which is much lower than sol-gel (1.5 Ω·cm2) and solid state reaction (2.3 Ω·cm2) at 800 ℃.  相似文献   

6.
Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.  相似文献   

7.
 Bulk nanocrystalline Fe3Al materials containing manganese of 10% were prepared by aluminothermic reaction. Hot pressing of those materials was performed at different temperatures and times. The microstructures of the alloy were investigated by optical microscope (OM) and electron probe microanalyzer (EPMA). The grain sizes of the materials were analyzed by X-ray diffraction (XRD) and transmission electron microscope (TEM). The results showed that the grain sizes of the materials increase after hot pressing. The grain sizes of the materials decrease with increasing the hot pressing times at the same temperature and the grain sizes of the materials increase with increasing hot pressing temperatures at identical times. The hardness and compressibility of the materials were also tested. The results showed that the hardness decreases with increasing hot pressing times at 800 ℃ and hardness increases with increasing the hot pressing temperatures. The variation of hardness with grain size of the nanocrystalline Fe3Al materials after hot pressing is contrary to the Hall-Petch relation. The materials are not broken during hot pressing and exhibit good plasticity and compressibility.  相似文献   

8.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

9.
Nanosized Gd2(1-x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties were investigated as functions of the Eu3+ doping concentration and annealing temperature.The results indicated that the as-prepared samples showed a strong emission of Eu3+ under the irradiation of 303 nm.For Eu3+-doped Gd2Ti2O7,the orange emission at 586 nm was the strongest,which was correspond...  相似文献   

10.
(Y,Gd) BO3:Eu phosphors were prepared by co-precipitation precursors, and luminescent properties were investigated. The precursors were synthesized by introducing hydroxyl ion to mixed solution of rare earth hitrates and boric acid, either through adding ammonia( precursor 1 )or through controlled release of hydroxyl ion of urea( precursor 2). The precursors were fired in air at 1000℃ for 2 h. Resulted phosphor synthesized with precursor 1 has non-uniformed particle with mean diameter of about 3μm, while that with precursor 2 exhibits uniformed near spherical-like morphology with mean diameter of about 300 nm. Phosphors with the two methods exhibit same crystal structure as that of commercial one. Emission spectra of the samples indicate that the sample prepared with precursor 2 shows relative higher intensity( exited by 172 nm VUV)than that prepared with the other precursor.  相似文献   

11.
Nanoscale Lu2O3:Eu3+ phosphor was prepared by a modified solution combustion method using urea and acrylamide monomer.The particle sizes and photoluminescent properties of nano-phosphor were closely related to the molar ratio of urea-to-RE nitrates and acrylamide monomer-to-RE nitrates.The as-prepared samples with the sizes of 9.6-11.6 nm were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and energy dispersive spectrometer.Lu2O3:Eu3+ nano-phosphor that depicted high photoluminescence in the size around 10 nm was reported.Compared with the sample prepared by solid state reaction,the photoluminescence of sample was increased sufficiently to be 45.1%.The emission spectra of the samples presented the typical emission from 5D0 level to 7FJ(J=0,1,2,3,4) level of the Eu3+ ion.  相似文献   

12.
Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.  相似文献   

13.
The luminescence properties of CdSiO3:RE^3 phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 ~C for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y^3 ,La^3 , Gd^3 , Lu^3 , Ce^3 , Nd^3 , Ho^3 , Er^3 , Tm^3 and Yb^3 are introduced into the CdSiO3 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr^3 , Sm^3 , Eu^3 , Tb^3 and Dy3 , the mixture of their characteristic line emissions with the ~420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.  相似文献   

14.
A series of CaMoO4 phosphors doped with trivalent dysprosium ions (Dy3+) and lithium (Li+) were prepared by solid state method at 750 °C for 3 h. X-ray diffraction (XRD) confirmed the crystal structure and quality of phosphors. Scanning electron microscopy (SEM) in- dicated that the phosphors presented good crystalline state, and the crystalline grain sizes were about 0.5-3.0 μm. The emission spectra showed that the phosphors had intense emission at 480 (4F9/2→6H15/2), 576 (4F9/2→6H13/2) and 660 nm (4F9/2→6...  相似文献   

15.
Gd3Sc2Ga3O12 polycrystalline material for single crystal growth was prepared with Ga, Gd2O3 and Sc2O3 as starting materials and aqueous ammonia as the precipitator by co-precipitation method. The precursors sintered at various temperatures were characterized by infrared spectra (IR), X-ray diffractometry (XRD) and transmitted electron microscopy (TEM). The results showed that pure GSGG phase could be obtained at 900 ℃. The sintered powders were well-dispersed and less-aggregated in the sintered temperature range of 900 - 1000 ℃. XRD and TEM show that the polycrystalline particle sizes of the polycrystalline powders were about 20 - 50 nm. Compared with the method that Ga2O3, Gd2O3 and Sc2O3 were mixed directly and sintered to get polycrystalline materials, the synthesized temperature was lower and sintered time was shorter. Thus co-precipitation was a good method to synthesize GSGG polycrystalline material.  相似文献   

16.
(Y, Gd)Al3 (BO3)4:Eu^3 samples were prepared by the conventional solid state reaction. The XRD results indicate that the crystal symmetry is low. The excitation spectrum is composed of two broad bands centered at about 170 and 250 nm respectively. In the emission spectra, the peak wavelength is about 616 nm under 147 nm VUV excitation. The luminescent chromaticity coordinate and the relative intensity change along with Gd^3 mole concentration in the range of 0.15 to 0.85 mol (and Eu^3 mole concentration, 0.02 to 0. 1 mol). The correlative data show that the concentration quenching occurs when the Eu^3 mole concentration ranges from 0.02 to 0.1 mol, and the Gd^3 →Gd^3 , Gd^3 →Eu^3 and host→Eu^3 , Gd^3 energy transfers exist, and Gd^3 mole concentration influences Eu^3 emission.  相似文献   

17.
8%(mole fraction) yttria-stabilized zirconia electrolyte thin wall tubes were prepared by improved slip casting method. The length and wall thickness of the tubes are 266 mm and 0.4 - 0.9 mm, respectively and the relative density is 96.7 %. The microstructure and electrical properties of samples sintered at different temperatures were studied using SEM and ac impedance spectroscopy. The effect of sintered density, grain and grain boundary on the electrical properties of the samples was analyzed. The research results show that the density of the samples increases gradually with increasing sintering temperatures. The microstructurc of samples strongly influences its electrical properties, and the electrical prop.erties of samples enhance with the increase of sintered density. The ionic conductivity of grain and grain boundary is increased as the sintering temperature increases. Better sinterability of the samples was obtained at the sintering temperature of 1650℃. The maximum open circuit voltage and short circuit current for single cell is 0.946V and 1.84A, respectively. The maximum output power of single cell is 0.46W at the temperature of 850℃.  相似文献   

18.
CeO2 nanocrystalline particulates with different sizes were prepared by precipitation method using ethanol as dispersive and protective reagent. XRD spectra show that the synthesized CeO2 has cubic crystalline structure of space group OH^H-FM3M, when calcination temperature is in the range of 250 - 800 ℃. TEM images reveal that CeO2 particles are spherical in shape. The average size of the particles increases with the increase of calcination temperature. Thermogravimetric analysis indicates that the weight loss of precursor mainly depends on the calcination temperature, and little depends on the calcination time. Measurements of CeO2 relative density show that the relative density of CeO2 nanocrystalline powders increases with increasing CeO2 particle size.  相似文献   

19.
The Y-Eu oxalate precursor was prepared with a homogeneous precipitation method. And the additives, Na2CO3, S, NaCl or their combination, were introduced into the precursor to prepare Y2O3 :Eu^3+ red phosphors at 1000 1300 ℃ for 2 h. The effect of molten salts on particle size and luminescent intensity was studied. The experimental results showed that the complex molten salt (Na:CO3 + S + NaCl) was conductive to enhance the luminescent intensity of Y2O3 :Eu^3+. The emission intensity of the phosphor prepared with these additives at 1300 ℃ was about 45% higher than that of the one prepared without molten salt, and about 11% higher than that of the corresponding commercial phosphor. Meanwhile, the particle size of Y2O3 :Eu^3+ phosphor was controlled effectively with the molten salt.  相似文献   

20.
Site Selective Spectroscopy of Suffactant-Assembled Y2O3:Eu Nanotubes   总被引:1,自引:0,他引:1  
Y2O3:Eu nanotubes were synthesized by a surfactant assembly mechanism. Under ultraviolet-light excitation,the nanotubes present luminescence properties different from that of Y2O3:Eu nanoparticles. The peak position of the charge transfer band in excitation spectra varies with the monitoring emission peaks, while the emission spectra are dependent on the excitation wavelength. Laser selective spectroscopy was performed to distinguish the local symmetries of the Eu^3 ions in the nanotubes. The results of laser-selective excitation indicate that the emission centers near the surface of nanotube wails exhibit inhomogeneously broadened spectra without spectral structures while the two sites (site B and site C) inside the nanotube walls present resolved spectral structures. It is concluded by the number and peak positions of the spectral lines that the sites B and C possess different site symmetries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号