首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Solid oxide fuel cell is a promising energy conversion system which converts chemical energy into electrical energy directly. Electrolyte is the key component and determines the working temperature. In this paper,ceria and scandia co-doped zirconia electrolytes sintered from 1300 to 1550 ℃ were chosen as research objects. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were performed to characterize the ceramic samples. The effects of grain size and grain boundary element segregation on the electrical conductivity were focused. Electrochemical impedance spectroscopy was used to calculate the bulk, grain boundary and specific grain boundary conductivity. Results show that the bulk and grain boundary ionic conductivity increases with the increasing grain size.However, the specific grain boundary conductivity decreases with the increasing grain size. This is explained by the fact that Sc~(3+) is segregated at the grain boundary, which leads to higher oxygen vacancy concentration when sintered at lower temperature.  相似文献   

2.
The electrical properties and ageing behavior of the rare earths (Pr6O11-Er2O3-Y2O3)-doped ZnO varistor ceramics were systematically investigated at sintering temperature range of 1335-1350°C. With an increase in the sintering temperature, the sintered density increased from 5.41 to 5.64g/cm3 and the average grain size increased from 5.8 to 7.9μm. The varistor properties and ageing behavior were significantly affected by small sintering temperature range of 1335-1350°C. The breakdown field noticeably decreased from 5767 to 3628V/cm with an increase in the sintering temperature. The varistor ceramics exhibited the highest nonlinear coefficient (43.2) at the sintering temperature of 1340°C. The varistor ceramics sintered at 1350°C exhibited a surprisingly excellent stability by exhibiting 0.3% in the variation rate of the breakdown field and 0.3% in the variation rate of the nonlinear coefficient for ageing stress of 0.95 E1mA/150°C/24 h.  相似文献   

3.
Sintering of Ce(0.8)Sm(0.2)O(1.9)   总被引:1,自引:0,他引:1  
Ce0.8Sm0.2O1.9(SDC)powder was prepared with an oxalate coprecipitation route.SDC solid solutions were sintered at various temperatures ranging from 1100~1450 ℃,and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),density measurements,and electrical conductivity measurements.The optimized processing parameters for densification were to uniaxially press the sample at 200~400 MPa and sinter it at 1350~1400 ℃ for 4 h.The density of the sintered pellets was 〉90% of the theoretical density;their soakage was 〈0.5%;and the average grain size was 1~2 μm.The conductivities of the typical sintered specimen were 0.0133 and 0.0211 S·cm-1 at 550 and 600 ℃,respectively;Its activation energy for ionic conductivity was 0.62 eV.The dense SDC bulk material could be used as the electrolyte layer of low temperature solid oxide fuel cells.  相似文献   

4.
In this study,Gd and Ca co-doped ceria electrolytes with the compositions of Ce_(0.8)Gd_(0.2-x)Ca_xO_(2-δ)(x=0-0.08) were prepared by a novel gel-casting method.The effects of the addition of Ca on the phase compositions,sintering behavio r,and electrical prope rties of samples were investigated.According to the scanning electron microscope results and relative density measurement results,it is found that the addition of particular quantity of CaO can promote the sintering densification with a uniform grain growth.When the sintering temperature is 1400℃,the sample with 6 mol% addition of Ca has the highest relative density,which reaches 98.5% of the theoretical density.The electrical properties testing results confirm that the electrical conductivity of the samples can be improved significantly by doping appropriate CaO content.The maximum conductivity of 0.082 S/cm can be obtained at 800℃ in the Ce_(0.8)Gd_(0.12)-Ca_(0.06)O_(1.87) sample.It suggests that CaO can be used as an effective sintering aid and a codopant on the optimization of electrical properties for ceria-based electrolytes.  相似文献   

5.
The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential thermal analysis (TG-DSC),X-ray diffraction (XRD),scanning electron microscopy (SEM) and a network analyzer.The result showed that forming temperature of the perovskite type crystal increased with increasing of x value.0.9CaTiO3-0.1LaAlO3 ceramics were sintered well from 1 400 to 1 550 oC,its bulk density increased with sintering temperature,and microwave dielectric properties of the ceramics at 1 400 oC was shown as follows: relative dielectric constant εr= 45.1,Q×f= 46 087 GHz and τf=–14.1×10–6/oC,respectively.But 0.7CaTiO3-0.3LaAlO3 ceramics were sintered well only when sintering temperature rose to 1 500 oC.(1–x)CaTiO3–xLaAlO3 (x=0.5,0.7 and 0.9,respectively) were not sintered well up to 1 550 oC and the sintered samples exhibited porous characteristic and with low bulk density.  相似文献   

6.
The effect of sintering temperature on microstructure, electrical properties, and pulse aging behavior of(V2 O5-Mn3 O4-Er2 O3)-doped zinc oxide varistor ceramics was systematically studied. When the sintering temperature increased, the average grain size increased from 6.1 to 8.7 m and the sintered density decreased from 5.52 to 5.43 g/cm3. The breakdown field decreased from 3856 to 922 V/cm with an increase in the sintering temperature up to 900 C, whereas a further increase to 2352 V/cm at 925 C. The nonlinear coefficient increased pronouncedly from 4.6 to 30.0 with an increase in the sintering temperature. The varistor ceramics sintered at 850 C exhibited the best clamping characteristics, with the clamp voltage ratio of the range of 2.22–2.88 for pulse current of 1–25 A. The varistor ceramics sintered at 925 C exhibited the strongest stability, with %ΔE 1 mA/cm2=–8.8% after applying the multi-pulse current of 25 A.  相似文献   

7.
 Effect of sinter hardening on the microstructure, density, hardness and tensile properties of Astaloy 85Mo+0.7% graphite was investigated. For this purpose, Astaloy 85Mo, a pre-alloyed powder, was mixed with 0.7% UF4 graphite and then pressed in single action die and sintered at 1120 ℃ for 30 min in N2-10%H2 atmosphere. Then samples were cooled from 0.5 to 3 ℃/s sintering temperature in accordance with different cooling rates. The difference in microstructure, hardness, density and tensile properties of the samples associated with different cooling rates from sintering temperature has been investigated. The results show that the microstructure remains bainitic by changing cooling rate, but it becomes finer and then the hardness and tensile strength of the samples will increase by increasing the cooling rate from sintering temperature.  相似文献   

8.
The effects of Sm on the microstructure and mechanical properties of Mg-11 Gd-2 Y-0.6 Al alloy were investigated by X-ray diffraction,optical microscopy,scanning electron microscopy,energy dispersive spectrometry and high resolution transmission electron microscopy.Based on the theory of edge—edge matching and electronegativity theory,the mechanism of grain refinement is discussed.The strengthening mechanism is expounded conveniently from fine grain strengthening,coherent strengthening,precipitation strengthening and grain boundary strengthening.The results show that the micro structure of Mg-11 Gd-2 Y-0.6 Al alloy is mainly composed of a-Mg matrix,Mg_5 Gd and Mg_(24)Y_5 phases.The addition of Sm forms Mg_(41)Sm_5 phase in the alloy and refines the alloy.The addition of Sm significantly improves the mechanical properties of the alloy at room and high temperatures.When the addition of Sm is 3 wt%,the tensile strengths of the alloy at room temperature and high temperature(200℃) reach the maximum value 292 and 321 MPa,respectively.The fracture mode of the alloy at different temperatures is mainly brittle fracture and intercrystalline fracture.  相似文献   

9.
 The addition of Cu 10Sn alloy for developing the high strength 465 maraging stainless steel from elemental powders was studied. The sintering parameters investigated include the sintering temperature, the sintering time, and the mass percent of Cu 10Sn. For vacuum sintering, effective sintering occurs at temperature between 1 250 ℃ and 1 300 ℃. The maximum sintered density was achieved at 1 300 ℃ for 60 min with 3% (in mass percent) Cu 10Sn alloy. More than 3% (in mass percent) Cu 10Sn content and temperature above 1 300 ℃ caused slumping of the samples. A maximum density of 74 g/cm3 was achieved with 3% (in mass percent) Cu 10Sn content at a sintering temperature of 1 300 ℃ for 60 min. A maximum ultimate tensile strength (UTS) of 517 MPa was achieved with 3% (in mass percent) Cu 10Sn content. With content higher than 2% (in mass percent) Cu 10Sn, a maximum increase in the density was observed. The fracture morphologies of the sintered samples are also reported.  相似文献   

10.
The full densification polycrystalline cerium hexaboride (CeB6) cathode material was prepared by using the spark plasma sintering (SPS) method in an oxygen free system. The starting precursor nanopowders with an average grain size of 50 nm were prepared by high-energy ball milling. The ball-milled nanopowder was fully densified at 1550 °C under 50 MPa, which was about 350 °C lower than the conventional hot-pressing method and it was also lower than that of coarse powder under the same sintering condition. The mechanical properties of nanopowder sintered samples were significantly better than that of coarse powder, e.g., the flexural strength and Vickers hardness were 211% and 51% higher than that of coarse powder, respectively. The electron backscattered diffraction (EBSD) result showed that the (100) fiber texture could be fabricated by the ball-milled nanopowder sintered at 1550 °C and the thermionic emission current density was measured to be 16.04 A/cm2 at a cathode temperature of 1873 K.  相似文献   

11.
采用微波烧结技术制备锇(Os)烧结体,研究了生坯压制压强和微波烧结主要工艺参数(升温速率、烧结温度和保温时间)对Os烧结体组织结构和相对密度的影响规律,分析了微波烧结致密化的机理。结果表明,1350 ℃微波烧结后Os平均晶粒尺寸约0.22 μm,与粉体颗粒尺寸差别不大;随着烧结温度增加到1500 ℃,晶粒尺寸长大到0.76 μm。1500 ℃烧结时,延长保温时间,Os烧结体的相对密度先快速增加,后缓慢增加。1500 ℃微波烧结60 min后,Os烧结体相对密度为94.3%,平均粒径小于1 μm。烧结动力学分析表明,Os的致密化过程是体积扩散和晶界扩散共同作用的结果,随着烧结温度的升高,扩散机制从晶界扩散逐渐向体积扩散转变。  相似文献   

12.
Ceramic LaNiO3 samples were prepared by solid state reaction method at different sintering temperatures. It was found that the resultant was not ABO3 perovskite single phase but dual phase La2NiO4 and NiO, and the percentage of the two phases varied with sintering temperature. Ceramics sintered at 1400 ℃ were well crystallized and the phase ratio of La2NiO4 was the maximum. The surface morphology observed by scanning electron microscopy (SEM) indicated that the grains of the ceramics sintered at 1400 ℃ were uniform and compact, which were in agreement with the properties of high density and low electrical resistivity of the samples. X-ray diffraction (XRD) patterns of ceramics before and after arc erosion indicated their high structural stability, which resulted in the good arc erosion resistance properties for silver-based electrical contact materials. The contact materials prepared with the ceramic sintered at 1400 ℃ exhibited better mass transition and arc erosion resisting properties.  相似文献   

13.
以平均粒径约150μm的球形钛粉为原料,采用高能球磨结合放电等离子烧结技术制备由双尺度晶粒组成的高致密纯钛块体材料,研究高能球磨过程中钛粉的形貌、尺寸及显微组织的变化,分析球磨钛粉放电等离子烧结时的致密化行为和显微组织的演变规律,测试烧结钛块体材料的室温压缩性能。结果表明:钛粉在球磨初期发生剧烈的塑性变形并相互焊合,形成层片状团聚粉末。球磨10 h时,钛粉的部分晶粒细化至40~100 nm。放电等离子烧结过程中,随烧结温度升高和烧结时间延长,烧结钛的密度逐渐增大。在烧结温度为800℃、保温时间为4 min、烧结压力为50 MPa的条件下,烧结钛的密度达到4.489 g/cm3,接近全致密,其显微组织由双尺度的等轴晶组成,细晶区晶粒尺寸为1~2μm,粗晶区晶粒尺寸为5~20μm,二者呈层状交替分布;该试样在室温压缩条件下的综合力学性能与铸锻Ti-6Al-4V合金相当。  相似文献   

14.
为开发低成本烧结钕铁硼磁体,用30% Ce替代(Nd0.75Pr0.25)32.69Fe66.25B1.06磁体中的Nd和Pr,研究了磁体在烧结及回火过程中的组织结构和磁学性能变化.结果表明,取向压坯在1030~1080℃烧结2 h后,随烧结温度升高,磁学性能下降,烧结温度为1030℃时综合磁学性能均最好.烧结态Ce替代磁体的综合磁学性能优于未替代磁体.一级回火后,相组成和晶粒尺寸基本不变,边界结构也未发生明显变化,磁体性能基本不变,或有少量下降.二级回火后,晶界明显改善,获得较清晰且平直的晶界,磁体矫顽力均得到大幅提高.Ce替代磁体的剩磁、矫顽力和磁能积均稍低于未替代磁体.   相似文献   

15.
采用机械球磨混粉和真空烧结相结合的方法制备了Fe-Cu-Mo-C合金,研究了不同烧结温度对粉末冶金Fe-Cu-Mo-C合金材料的显微组织、密度、抗拉强度和摩擦磨损性能的影响。结果表明:随着烧结温度由1 000℃升高到1 100℃,Fe-Cu-Mo-C合金烧结体组织孔隙数量减少、孔隙尺寸明显降低;当烧结温度提高到1 150℃时,烧结体组织中孔隙尺寸增大。随着烧结温度升高,烧结体的密度、硬度、抗拉强度和伸长率先增大后减小,磨损量先降低后升高。最佳烧结温度为1 100℃,此时烧结体的密度为6.90 g/cm3,抗拉强度为319 MPa,洛氏硬度为34.7 HRC,磨损量为0.087 g。  相似文献   

16.
采用两步烧结法制备了掺杂质量分数为7%TiN的NiFe2O4/TiN复合陶瓷惰性阳极材料,重点研究了烧结温度对NiFe2O4/TiN复合陶瓷惰性阳极材料的微观结构及性能的影响.研究结果表明:随着烧结温度的升高,惰性阳极材料的晶粒间隙变小,气孔逐渐减少,晶粒间结合度提高,体积密度呈先升高后降低趋势,在1325℃时达到最大值5.20g/cm3,但材料内部存在微裂纹;烧结温度为1300℃时,材料表现出较好的综合性能,抗弯强度达到最大值66.77MPa,一次热震强度剩余率为95.54%,表现出良好的耐高温冰晶石熔盐腐蚀能力;烧结温度超过1300℃时,材料内部缺陷尺寸增加,电解质成分更容易渗入到阳极材料中,耐腐蚀性能下降.  相似文献   

17.
以碳热预还原和氢气深还原两步制备的纳米钨粉作为烧结原料,即先通过碳黑还原脱除三氧化钨中的大部分氧,再以氢还原脱除残留的氧。该方法制备的钨粉颗粒呈球形形貌,平均晶粒度可达90 nm。同时,向钨粉中掺杂质量分数为1%和2%的氧化铝,探究了氧化铝对钨粉烧结行为的影响。通过烧结样品的断口形貌和晶粒的平均尺寸分析发现,氧化铝对烧结后期的晶粒长大有明显的抑制作用,相同的烧结温度下晶粒的尺寸随着氧化铝含量的上升而减小。在1600 ℃时,纯钨粉烧结坯的晶粒平均尺寸为2.75 μm,但添加质量分数为1%和2%氧化铝的烧结样品晶粒平均尺寸约为1.5 μm,这是由于氧化铝能有效地抑制烧结后期的钨粉晶粒长大。纯钨粉和掺杂氧化铝钨粉的烧结坯的硬度随温度升高具有不同的趋势。掺杂钨粉烧结坯的硬度随着温度的升高而升高,且其最大值高于800 HV。但是,纯钨粉烧结坯的硬度随烧结温度增加而先增加后降低,在1400 ℃时取得最大值(473.6 HV),这是由纯钨粉烧结坯的晶粒在高温下急剧长大所导致。在烧结温度为1600 ℃时,纯钨粉、掺杂质量分数1%和2%的氧化铝掺杂的钨粉的烧结坯的相对密度依次为98.52%、95.43%和93.5%。   相似文献   

18.
采用正交试验的方法确定了GT35钢结硬质合金放电等离子烧结(SPS)的最佳工艺,并对试样的组织和性能进行了测试分析,得出不同工艺参数对GT35钢结硬质合金性能的影响,并制备了GT35钢结硬质合金。结果表明,SPS制备GT35钢结硬质合金的最佳工艺为:960℃×5min×70MPa,该工艺条件下得到的GT35钢结硬质合金晶粒细小、组织分布均匀,致密度可达99.53%,硬度达到73.5HRC。与传统的烧结方法相比,SPS显著降低了GT35钢结硬质合金的烧结温度,缩短了烧结时间,烧结后材料的硬度也提高了1~2HRC。  相似文献   

19.
微波烧结制备ITO靶材的工艺   总被引:1,自引:0,他引:1  
采用单相ITO(indium tin oxide,铟锡氧化物)复合粉末,经过压制成形后,在纯氧气氛下微波烧结制备ITO靶材,研究烧结温度、保温时间和压制压力等主要工艺参数对ITO靶材致密化的影响。结果表明:靶材的相对密度随烧结温度升高而增大;在1 600℃烧结时,靶材的相对密度随保温时间增加先增大后减小,在保温1.5 h时相对密度达到最大值(98.67%),高温长时间烧结对ITO靶材的致密化不利。微波烧结的ITO靶材显微组织均匀,晶粒尺寸较均匀,约为6~8μm。不同温度下制备的ITO靶材均无SnO2相析出,仍是单一的固溶体相,不存在第二相。  相似文献   

20.
采用放电等离子烧结技术制备高钪含量Al-Sc合金,利用扫描电子显微镜、能谱仪和X射线衍射仪等设备对球磨前后Al-Sc合金粉末的形貌、相组成以及不同温度快速烧结样品的显微组织结构进行观察和分析,研究烧结温度对Al-Sc合金显微组织的影响。结果表明:球磨后粉末的形状较规则,其颗粒尺寸为25~45mm,并初步实现了机械合金化,除Al、Sc相以外,有少量Al3Sc和AlSc2相生成。放电等离子烧结可实现高钪含量铝钪合金的快速致密化,成功制备出钪含量30%(质量分数)的铝钪合金,通过调整烧结工艺参数,烧结样品的相对密度可达92.19%;当烧结温度高于500℃时,所得样品致密,无孔洞,且无明显晶界;随着烧结温度的提高,Sc相与第二相融合,形成Al3Sc、AlSc2等第二相,存在于合金中,且Al3Sc相呈现逐渐增强的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号