首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
针对现有锗萃取剂的弊端,采用HBL101从高浓度硫酸体系中萃取锗,分别考察了料液酸度、萃取剂浓度、时间、相比、温度等因素对锗萃取及反萃的影响并绘制出等温线。结果表明,在最佳条件下,采用体积分数为15%的HBL101+磺化煤油作为有机相(相比O/A=1∶1),经过4级逆流萃取,锗萃取率可达到98.32%;负载有机相用150g/L NaOH溶液反萃(相比O/A=8∶1),经过6级逆流反萃,锗反萃率达98%以上。  相似文献   

2.
针对废炼油催化剂酸浸液中的镍,研究了以HBL110为萃取剂进行直接选择性萃取。优化了萃取剂皂化率、萃取剂浓度、萃取平衡时间,确定了萃取与反萃取级数,并进行了实验室多级逆流串联萃取模拟试验及线上流程的连续萃取试验。结果表明:在皂化率40%、HBL110浓度25%、萃取时间10 min条件下,经五级逆流萃取,萃余液中镍质量浓度低于30 mg/L,镍萃取率达98%以上,Al、Fe萃取率低于3%;以75 g/L硫酸对镍负载有机相进行三级逆流反萃取可100%实现镍的反萃取;对废催化剂酸浸液进行线上萃取流程连续运行5 d,萃余液中镍质量浓度稳定在5 mg/L,镍萃取率达99%,反萃取液中镍质量浓度稳定在8 g/L,镍反萃取率为100%,有机相可以实现有效的循环再利用。  相似文献   

3.
使用新型萃取剂HBL110从红土镍矿硫酸加压浸出液中直接萃取镍,考察了萃取剂浓度、平衡pH、相比对镍萃取的影响,并绘制HBL110萃镍等温线。结果表明,在有机相体积组成为50%HBL110+50%磺化煤油,料液pH为2.5,有机相皂化率60%,相比O/A=1/1,萃取时间5min,温度30℃的条件下,镍的单级萃取率达到96%,采用相比O/A=1/2,镍的5级逆流萃取率达到99%。负载有机相使用稀酸洗涤后,按照时间10min、相比O/A=4/1、温度30℃、硫酸浓度100g/L的优化条件进行4级逆流反萃,镍反萃率达到98.5%,反萃液镍浓度达到40g/L,且反萃液杂质含量低。  相似文献   

4.
采用N235从镍钼矿盐酸浸出液中萃取钼的研究   总被引:3,自引:0,他引:3  
采用N235对镍钼矿盐酸浸出液进行了萃取钼的研究。试验结果表明,在最佳工艺条件下,5级逆流钼萃取率可达98%以上,镍损失率小于1%,负载有机相经稀酸洗涤除铁后采用氨水反萃,1级反萃率达97%以上,反萃液钼浓度为50 g/L左右,达到了钼镍分离及钼富集转型的目的。  相似文献   

5.
使用新型萃取剂HBL110从粗硫酸镍溶液中直接萃取镍。结果表明,萃取的较优条件为:萃取剂皂化率60%、萃取相比VO︰VA=2︰1、料液起始pH=2.2、萃取时间5 min,经5级逆流萃取,镍萃取率为98.63%,铁、钴、锌、钙、镁的萃取分别为10.41%、22.86%、8.42%、1.75%、1.38%。有机相经酸洗后反萃,反萃的较优条件为:反萃剂H2SO4浓度1.0 mol/L、反萃相比VO︰VA=4︰1、反萃时间5 min,该条件下进行4级逆流反萃,镍的反萃率为98.85%,反萃液镍浓度为31.11 g/L,且反萃液杂质含量低。  相似文献   

6.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30%HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1H2SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1∶4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4∶1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2∶1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.   相似文献   

7.
复杂镍浸出液萃取净化的研究   总被引:1,自引:1,他引:0  
以D2EHPA为萃取剂,从钼镍矿的复杂镍浸出液中萃取分离锌、铜。考察了萃取平衡时间、D2EHPA体积浓度、相比(O/A)、料液pH对萃取分离锌、铜效果的影响,确定了D2EHPA萃取锌、铜的最佳条件。室温下萃取除杂的最佳工艺条件为:萃取平衡时间3 min,D2EHPA的体积浓度20%,相比1∶1,料液pH=2.0,一级萃取率锌为89.5%,铜为11.0%。负载有机相经1 mol/L的H2SO4反萃,锌、铜和镍均可完全反萃。经三级逆流萃取可将料液中锌降低到0.01 g/L,萃取率达98.9%。  相似文献   

8.
采用Mextral 984H萃取Cu-新型萃取剂HBL110萃取Co的工艺,从含Fe等杂质的铜钴矿堆浸液中回收Co,考察了有机相配比、皂化率、平衡pH值、温度、相比对Co萃取率的影响。实验结果表明,在有机相体积分数50.5%、皂化率50%、料液pH值2.4~2.6、相比1∶1、温度30℃、时间5min、萃取级数4级的条件下,Co萃取率大于95%;负载有机相经纯水洗涤后,在H2SO4浓度0.7mol/L、相比8∶1、时间5min、温度40℃、反萃级数4级的条件下,Co反萃率达到94%以上,反萃液Co浓度达到20g/L,与Fe、Mn、Mg等杂质实现分离并达到富集效果。  相似文献   

9.
以双氧水为络合剂,采用混合萃取剂进行了高钼钨酸铵工业料液络合萃取分离钨钼的初步试验研究。试验考察了振荡平衡时间、双氧水用量、水相平衡pH值、温度等因素对钨钼萃取分离的影响,绘制了钼的萃取等温线并探索了反萃取方法。研究结果表明,该萃取体系具有良好的萃钼能力和钨钼分离性能,混合萃取剂浓度为45%的有机相对钼的饱和萃取容量达9.2 g/L,单级萃取钼钨分离系数可达50以上,NaOH溶液能有效反萃负载有机相。  相似文献   

10.
N235萃取镍钼矿硫酸浸出液中钼的研究   总被引:4,自引:0,他引:4  
对N235萃取镍钼矿酸浸液中的钼进行了实验研究,确定了萃取和反萃步骤的最优条件。结果表明,三级逆流萃取率可达99.7%,而一级反萃率可达95.5%,反萃液钼浓度约为100 g/L,整个工艺的金属钼直收率可达98%以上。通过该工艺可实现镍钼矿酸浸液中的镍钼分离,以及钼的富集和部分除杂。  相似文献   

11.
采用P204作为萃取剂富集分离石煤酸浸液中的钒和钼,考察了溶液pH值、反萃剂种类、反萃剂浓度、反萃相比对钒钼富集分离的影响.研究结果表明:经过Na2S2O3还原后的溶液,钒的萃取率可以达到84.1%,钼的萃取率可以达到81.1%;采用1.5 mol/L的硫酸溶液反萃负载钒和钼的有机相,钒的反萃率可以达到99%以上,钼不能被反萃;在O/A为(体积比)3∶1的条件下采用60 g/L的碳酸氢铵溶液可以将钼反萃,其反萃率为76.4%.采用不同的反萃剂,可以实现钒和钼的分离.  相似文献   

12.
研究了一种从彩钼铅粗精矿碱性浸出液中回收钼的新工艺。该工艺涉及镁盐除硅、N235萃取钼、氨水溶液反萃取钼、盐酸沉淀钼等工序。试验结果表明:在溶液中ρ(Mo)=9.2g/L、ρ(SiO2)=1.01g/L,除硅温度75℃,pH=8.5,反应1h,氯化镁加入量为理论量4倍条件下,除硅率达87.31%;以15%N235-10%仲辛醇-75%煤油溶液作为萃取剂、在Va∶Vo=2.5∶1、pH为1.7~2.0条件下,混合萃取3min,钼的3级逆流萃取率为99.55%;经反萃取和沉淀钼,最终获得钼质量分数64%以上的氧化钼产品。该工艺钼回收率高,除硅效果较好。  相似文献   

13.
以等离子炉富集产出的铂钯铑铁合金溶解造液萃钯后的余液为原料,选择TOA-TBP混合萃取剂萃取分离铂。研究单一TBP、TOA以及混合体系对铂的萃取行为。结果表明,对于贱金属较高的溶液体系,100%TBP对铂的萃取率仅有80.9%,单一TOA在高浓度下铂的萃取率接近100%,但铑的共萃率也随之上升,最高可达到82.86%。而95%TBP-5%TOA的混合体系在0.5 mol/L HCI,相比为1,旋转速度100 r/min条件下,铂的萃取率达到99.9%以上,铑的共萃率仅为0.2%。选择稀盐酸洗涤负载有机相,10 mol/L盐酸反萃,铂的反萃率达到97.2%。TOA-TBP混合体系可以实现铂铑高效分离,且该体系对铂的萃取具有协同效应。  相似文献   

14.
采用季铵盐萃取剂N263, 从高浓度钼酸钠溶液中选择性萃取V, 考察有机相组成、平衡pH值、接触时间、温度、相比对钼钒萃取的影响, 探索萃取后负载有机相选择性洗涤除Mo的条件.结果表明, 在有机相组成为15 % N263、12 %仲辛醇、料液pH值为8.50、相比VO/VA=1: 2、混合时间5 min、温度25 ℃的条件下, 经过5级逆流萃取, V的萃取率大于99.60 %, Mo的萃取率低于0.5%, 钒钼的分离系数βV/Mo可达63 000;采用0.1 mol/L NaCl+0.3 mol/L NaHCO3为洗涤剂, 在相比VO/VA=5: 1, 混合时间5 min、温度25 ℃的条件下, 经过5级逆流洗涤, 负载有机相中Mo的洗脱率达到98.87 %, 且V的损失率在0.4 %以下; 经反萃可得到含V 51.33 g/L, Mo < 0.03 g/L的钒酸钠溶液, 实现了钼钒的分离.   相似文献   

15.
In view of the problem of ammonia-nitrogen wastewater pollution in rare earths extraction and separation, the novel saponification agent of organic phase, which is magnesium bicarbonate solution, was prepared with the natural rich and cheap dolomite as raw material through carbonation process. The behavior and purification of main impurities ions in the carbonation process as well as the application effect of the novel saponification agent in the extraction and separation was researched. The results showed that the concentration of Fe, Al, Si impurities ions was less than 5 ppm in the saponification agent through the development of effective removal technology, respectively. When the novel saponification agent was used in the extraction and separation, magnesium utilization rate was more than 95%, and rare earths extraction rate above 99.5% has achieved. Therefore, the technology could replace ammonia-water to saponify the organic phase in rare earth extraction and separation process.  相似文献   

16.
Abstract

Primary amine can be used to separate vanadium(V) from chromium(VI) effectively in weakly alkaline solution by solvation mechanisms, as shown by earlier work. Separation of rhenium(VII) from molybdenum, tungstenfVI) from molybdenun, etc. can be very effectively carried out by using primary amine mixed with neutral donor reagents by synergistic solvation extraction. Experimental results indicate the presence of solvation extraction in addition to the ordinary anion exchange extraction with amines as solvent. Iron present in the sulfuric acid leaching solution as impurity gets extracted into the organic phase and is difficult to strip. Several mixed solvent systems with an amine and a neutral donor cxtractant have been developed for iron removal. These have common feature that the iron in the organic phase can be stripped with dilute sulfuric acid.  相似文献   

17.
采用焙烧—二段氨浸—萃取—反萃—铜电积—硝酸沉钼工艺流程处理低品位含铜钼精矿,最终产品为电解铜和钼酸铵。结果表明,铜回收率达到95%以上,钼回收率达到93%以上,产品均达到国标一等品标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号