首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《特殊钢》2017,(3)
通过钙处理过程中Fe-Al-Ca-O-S体系的热力学平衡计算,得出在1 873 K时各种平衡态下的[Al]-[O]、[Al]-[Ca]、[Al]-[S]平衡曲线图,并系统分析了各组元对夹杂物变质的影响。研究发现F-级高强度船板钢[Al]为0.02%~0.03%时,为保证夹杂物充分变质,钢中[O]控制在25×10~(-6)以下;钢液中生成12CaO·7Al_2O_3的[Ca]为15.24×10~(-6)~19.97×10~(-6),生成3CaO·Al_2O_3的[Ca]为70.87×10~(-6)~92.88×10~(-6);适当低的钢液温度有利于生成CaS,抑制MnS的聚集析出。120 t BOF-LF-VD-板坯连铸流程生产F-级高强度船板钢DNV F40(/%:0.092C,0.41Si,1.56Mn,0.015P,0.002S,0.032A1,0.035Nb,0.035Ni,0.010Ti,0.080V)的结果表明,当LF精炼渣组成/%:24.9Al_2O_3,55.6CaO,7.7MgO,8.0SiO_2,1.24TFe,加钙前钢中铝含量0.03%,氧含量0.0010%时,每炉钢水喂纯钙线150 m(0.21 kg/m),钢中夹杂物由加钙前Al_2O_3变质为球形钙铝酸盐夹杂物。  相似文献   

2.
通过钢液与夹杂物之间的热力学平衡计算,研究了20CrMnTiH1精炼钢水中Al_2O_3夹杂物钙处理后可能变性的程度和CaS夹杂生成条件。计算结果表明,[S]0.020%~0.035%、[Al]0.02%~0.04%的钢水进行钙处理时易生成稳定的CaS,并且铝脱氧的产物Al_2O_3难以完全变性成低熔点钙铝酸盐12(CaO)·7(Al_2O_3)。为使Al_2O_3完全变性成低熔点(CaO)·(Al_2O_3)和12(CaO)·7(Al_2O_3)钙铝酸盐,在精炼过程应在低[S]和温度≥1600℃情况下对钢水进行钙处理,软吹氩搅拌后进行喂硫线操作,同时可以显著减少水口堵塞的发生。  相似文献   

3.
对国内某钢厂EAF→LF→VD→模铸工艺生产的Cr12MoV钢,VD工序不同时点进行取样,利用ASPEX自动扫描电镜分析统计钢中非金属夹杂物的成分、数量、尺寸等信息。结果表明,钢中夹杂物类型及形貌的演变主要受稀土元素的影响,稀土(La、Ce)添加量为134×10~(-6),稀土能与钢液中的[O]、[S]结合,置换氧化物类夹杂中的氧和硫化物类夹杂中的硫,将其转变为球状或近球状的RE_2O_3、RE_2S_3、RE_2O_2S,并能与钢液中的[O]、[Al]结合生成REAlO_3;夹杂物数量及尺寸的演变与VD工序软吹时间有关,当软吹时间控制在26~45 min时,钢中夹杂物数量和尺寸均随软吹时间的增加不断减小,软吹时间增至55 min时夹杂物尺寸仍在减小但数量有所增加,且主要表现为Al_2O_3和REAlO_3类数量的增加。综合钢种用途,考虑夹杂物改性及VD工序成本,在此稀土添加量情况下,Cr12MoV钢VD工序最佳软吹时间应控制在33~45 min。  相似文献   

4.
运用Aspex Explorer扫描电镜对比了3种不同初始状态钢包冶炼条件下的帘线钢盘条中夹杂物成分、变形性能以及数量密度等,指出不同初始状态的钢包对帘线钢精炼渣成分和成品[Al]含量的影响。结果表明,同等条件下,分别使用冶炼过Si、Al-Si以及Al脱氧钢的钢包冶炼帘线钢时,精炼渣碱度、渣中Al_2O_3含量和成品[Al]含量均呈上升趋势,对应精炼渣碱度分别为0.95、1.1、1.4,渣中Al_2O_3质量分数分别为7.0%、11.0%、15.0%,成品[Al]的质量分数分别为7×10~(-6)、13×10~(-6)、16×10~(-6)。采用冶炼过Al、Al-Si脱氧钢的钢包冶炼的帘线钢盘条夹杂物数量密度分别为0.96、1.20个/mm~2,夹杂物中Al_2O_3平均质量分数分别为25.9%、31.8%,夹杂物塑性差,轧制后长宽比平均值分别为5.6、5.1。采用冶炼过Si脱氧钢的钢包冶炼的帘线钢盘条中夹杂物数量密度为0.79个/mm~2,夹杂物中Al_2O_3平均质量分数为15.0%,为塑性夹杂物,轧制后长宽比均值为11.3。实验证明,冶炼帘线钢不宜使用初态为Al脱氧或者Al-Si脱氧的钢包。  相似文献   

5.
《特殊钢》2017,(1)
采用热力学计算方法得出316L不锈钢(/%:0.02C,0.51Si,1.15Mn,0.030P,0.001S,16.77Cr,10.12Ni,2.07Mo,0.040N,0.006Ti,0.004A1)精炼过程中脱氧平衡后形成MgO·Al_2O_3、2MgO·SiO_2、3Al_2O_3·2SiO_2、2NgO·2Al_2O_3·5SiO_2优势区图,研究和分析了各类夹杂物生成与转变的热力学条件。结果表明,在1 873 K时,当钢液中的溶解Al含量低于0.001%和溶解Mg含量低于2×10~(-7)%时才能形成低熔点变形能力较好的2MgO·2Al_2O_3·5SiO_2类夹杂物;当钢液中溶解Al含量在1.7×10~(-4)%以下,钢液中不形成MgO·Al_2O_3尖晶石夹杂;2MgO·SiO_2与3Al_2O_3·2SiO_2类高熔点夹杂物形成区域最大。实践表明,加Ca对高熔点夹杂物2MgO·SiO_2与3Al_2O_3·2SiO_2变性处理的热力学条件充足,当316L不锈钢180 t LF钢液溶解氧为0.002 0%,进行喂硅钙线2 m/t,精炼终点[O]为0.001 5%,2 mm冷轧板夹杂物为C类0.5~1.0级,主要成分为CaO·Al_2O_3·SiO_2。  相似文献   

6.
文中通过热力学软件FactSage 7.0和工业实践,对1 873 K下SWRCH22A冷镦钢脱氧过程中非金属夹杂物生成热力学进行研究.计算结果表明,当冷镦钢中[Al]含量增加到2×10-6以上时,平衡时钢中对应生成液态夹杂物、MnO·Al2O3和Al2O3,表明冷镦钢出钢过程应先加铝再加锰以降低精炼渣的氧化性.当冷镦钢中的[Mg]含量超过0.5×10-6时,钢中夹杂物由Al2O3转变为MgO·Al2O3;当钢中的[Mg]含量超过约9×10-6时,钢中夹杂物主要为MgO;随着钢中[Al]含量的提高,生成尖晶石夹杂物所需的最小[Mg]含量逐渐增大.当冷镦钢钢液中[Ca]含量超过约1.3×10-6时,钢中生成的夹杂物主要为液态钙铝酸盐;当钢液中的[Ca]超过约13×10-6时,钢中开始生成固态CaO夹杂物.冷镦钢中形成液态钙铝酸盐夹杂物所需的最小[Ca]含量随着钢中[Al]含量的提高逐渐增大.实验检测和热力学计算结果基本吻合,此外,研究发现,纯铁液的脱氧热力学与冷镦钢差异较大,因此,不能采用纯铁液的脱氧热力学指导冷镦钢生产实践.  相似文献   

7.
《特殊钢》2016,(1)
GCr15钢的生产流程为90 t转炉-LF-VD-250 mm×280 mm方坯连铸-轧制。转炉出钢加铝脱氧,LF由高碱度渣[/%:55~58CaO,3~10MgO,12~16SiO_2,16~24Al_2O_3,≤1(MnO+FeO)]精炼,LF喂Al后T[O]为14×10~(-6),LF终点T[O]10×10~(-6)。采用SEM(扫描电镜)+EDS(能谱仪)的方法,研究了线材中超标DS类夹杂物的成分分布,发现夹杂物中心以复合氧化物CaO-MgO-Al_2O_3为主,外围包裹少量CaS;这些氧化物中,Al_2O_3含量约占65%,分布最为均匀;CaO含量约占20%,MgO含量约占15%。统计分析结果表明,VD真空处理后每平方毫米13μm以上大颗粒夹杂物数量增至7,软吹后降至2.1,线材中1/3大颗粒夹杂物来源于钢包渣带入。  相似文献   

8.
《钢铁研究学报》2021,33(4):293-301
无间隙原子钢(IF钢)对含铝夹杂物要求极为严格。为冶炼洁净IF钢,采用热力学软件FactSage 7.0对IF钢精炼渣系做了优化计算,并采取6组工业实验做验证,根据结果提出改进措施。实验中采取氧传感器、碳硫分析仪及ICP-AES对钢和渣成分进行检测,并通过ASPEX自动扫描电子显微镜检测钢中夹杂物成分与数量。热力学计算及实验研究发现,转炉脱碳结束时钢液中碳质量分数宜控制在0.04%,转炉渣中FeO质量分数控制在14.9%以内,降低钢中[O]质量分数到470×10~(-6)。精炼时控制补吹氧炉次比在64%以下,补吹量在17 m~3内,精炼渣中SiO_2、MgO及TFe质量分数分别控制在6%~8%、6%和5%~10%,钙铝比控制在1.4~1.6时,钢中[O]质量分数可控制在10×10~(-6),且该精炼渣系对Al_2O_3有较好的吸附性。在确保精炼脱氧的同时,降低钢液二次氧化,达到IF钢洁净冶炼目的。  相似文献   

9.
分析了高碳硬线钢82B在冶炼过程中复合夹杂物-钢液-渣及耐火材料局部动态平衡反应过程及Mn、Si和Al脱氧条件下夹杂物成分变化规律.利用热力学计算软件FactSage进一步计算分析了硬线钢获得良好变形能力的Al2O3-SiO2-MgO-CaO-MnO五元系夹杂物所需要的条件:钢液中[Al]的质量分数控制在(25~100)×10-6时,相应地钢液中溶解[O]的质量分数可以控制在(5~20)×10-6.在低熔点区域内,[Si]的质量分数可以控制在0.1%~1.5%;[Mn]的质量分数控制在0.2%~1%.  相似文献   

10.
基于Fact Sage热力学软件的最小吉布斯自由能原理,研究了不同[Ca]、[Mg]、[Al]、[O]含量条件下GCr15轴承钢凝固过程中夹杂物的析出行为。结果表明:随着[Ca]含量由0.000 5%增加至0.004 5%,轴承钢中析出的夹杂物类型由Ca O·2Mg O·8Al_2O_3、Ca O·2Al_2O_3向2Ca O·Si O_2、Ca S转变,钢中夹杂物总质量分数由约0.004 5%增加到约0.009 4%。随着[Mg]含量从0.000 1%增加到0.000 9%,钢中析出的夹杂物由Ca O·Al_2O_3、2Ca O·Si O_2向Mg O·Al_2O_3和Ca S转变,钢中夹杂物总质量分数由约0.003 2%增加到约0.004 1%;[Al]含量由0.005%增加至0.05%时,钢中析出的夹杂物类型由2Ca O·Si O_2向Ca O·Al_2O_3、Ca O·2Al_2O_3转变,夹杂物总量由0.002 8%增加至0.003 3%,变化相对不明显;随着[O]含量由0.000 3%增加至0.002 1%,钢中析出的夹杂物类型由Ca S向Ca O·Al_2O_3、Ca O·2Al_2O_3转变,夹杂物析出量由0.002 4%增加到约0.005 1%。  相似文献   

11.
Study on LF Refining Slag and Slagging Regime of High-Aluminium Steel   总被引:1,自引:0,他引:1  
During secondary refining of molten steel, reaction of steel-slag has great influence on the quality of steel. Taking high aluminium steel ([Al]≥0.8%) for instance, reaction control of 4[Al]+3(SiO2) = 2(Al2O3)+3[Si] was discussed by both thermodynamics calculation and industrial experiments. The results show that content of silicon increased sharply when content of SiO2 in slag exceeded 10%. In order to prevent the increment of silicon content and reoxidation for high aluminium steel, reasonable component range of LF refining slag is: %CaO/%Al2O3=1.6-1.9, %SiO2 <10. Results of the industrial experiments indicate that the CaO-Al2O3 based refining slag has strong ability of desulfurization and inclusion absorption. Average desulfurization rate is 80%, and T[O] reduces above 50% after refining, with the average sulfur content and T[O] about 0.0025% and 11×10-6,respectively, which can meet the requirements of secondary refining and obtain good castability of steel in continuous casting process.  相似文献   

12.
精炼钢水流动性差的原因分析与改进   总被引:1,自引:0,他引:1  
精炼钢水由于含[Al]量较高,在生产过程中极易氧化生成Al2O3夹杂,造成钢水流动性变差,浇注困难。通过强化转炉吹炼控制,降低钢水氧含量,改进精炼造渣、吹氩和喂线等工艺操作,降低钢水中夹杂物,提高含铝钢水流动性,在产量提高35%的同时,废品坯的比例由0.1%降至0.018%。  相似文献   

13.
基于冶金Si-O平衡反应和冶金熔盐体系存在最小吉布斯自由能原理,运用Factsage热力学软件对20CrMnTi齿轮钢精炼钢液与CaO-Al2O3-SiO2渣系间的氧平衡进行了模拟计算.相图计算结果表明,渣/夹杂物存在2个熔点低于1400℃的区域,其中低SiO2高Al2O3区域的平衡氧含量远远低于高SiO2低Al2O3区域的平衡氧含量.控制炉渣/夹杂物中wCaO/wAl2O3≤2.0且wCaO/wSO=2≥4.7可以实现钢中平衡[O]的质量分数低于5×10-6.  相似文献   

14.
肖鸿光 《特殊钢》2021,42(4):51-55
衡钢采用硅钙脱氧工艺、控制EAF钢水中全氧含量、LF渣系中Al2O3含量、控制精炼时间≥40 min、VD真空脱气、软吹时间≥20 min、保护浇注防止钢水二次氧化和促使钢中夹杂物上浮等应用工艺措施,可有效降低钢水中B类夹杂物Al2O3数量和尺寸以提高钢的洁净度。生产实践表明:油缸钢生产中精炼炉控制钢水[Al]s≤0.004%、T[O] ≤0.002 0%、精炼终渣(FeO) ≤0.8%、碱度(R)控制在2.0~3.2有利于B类夹杂物控制。当B类夹杂物不超过1.0级有利于控制刮滚工艺"白点"的产生。  相似文献   

15.
430不锈钢尖晶石夹杂物控制的热力学分析   总被引:1,自引:0,他引:1  
通过热力学计算,得出了硅脱氧430不锈钢熔体Fe-Mg-Al-Si-O体系MgO.Al2O3、2MgO.SiO2、3Al2O3.2SiO2和2MgO.2Al2O3.5SiO2的平衡相图,分析了控制尖晶石夹杂物形成与转变的热力学条件。结果表明:1 873 K时,当钢中Al的质量分数在1×10-6以下,钢水中基本不形成镁铝尖晶石;随钢水中溶解铝含量的逐渐降低,由尖晶石转变为2MgO.SiO2所需的溶解氧质量分数逐渐提高。当钢水中溶解镁的质量分数在2×10-6,控制钢水中w(Al)4×10-5、w(O)8×10-6时,对于抑制不锈钢尖晶石夹杂物的形成有利。  相似文献   

16.
针对新兴铸管炼钢部HRB500钢水钙处理做了热力学计算和现场取样分析。热力学计算结果表明,只需要加入较少的钙,即可使Al2O3变性为CaO·Al2O3,当钢中[Al]=0.006%时,夹杂物变性为12CaO·7Al2O3需要[Ca]≥4.1×10-6。在钢中[Al]含量不变化的情况下,随着钢水温度的降低,钢中的[Ca]含量也随之下降,才能满足夹杂物的成分在12CaO·7Al2O3附近。取样分析结果表明,目前喂CaSi线不足,夹杂物变性不完全。  相似文献   

17.
陈天明 《钢铁》2011,46(4):26-30
 利用热力学软件计算了齿轮钢氧含量与夹杂物成分的关系、夹杂物转变条件。结果表明,超低氧20 CrMoH钢中具有较高塑性的非金属夹杂物成分为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的时钢液中铝含量在0.020%左右,钙含量>0.7×10-6,氧含量在0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2O3、MgO•Al2O3夹杂物可转变为低熔点的钙铝酸盐。上述结果在工业试验中得到了验证。  相似文献   

18.
摘要:无间隙原子钢(IF钢)对含铝夹杂物要求极为严格。为冶炼洁净IF钢,采用热力学软件FactSage 7.0对IF钢精炼渣系做了优化计算,并采取6组工业实验做验证,根据结果提出改进措施。实验中采取氧传感器、碳硫分析仪及ICP AES对钢和渣成分进行检测,并通过ASPEX自动扫描电子显微镜检测钢中夹杂物成分与数量。热力学计算及实验研究发现,转炉脱碳结束时钢液中碳质量分数宜控制在0.04%,转炉渣中FeO质量分数控制在149%以内,降低钢中[O]质量分数到470×10-6。精炼时控制补吹氧炉次比在64%以下,补吹量在17m3内,精炼渣中SiO2、MgO及TFe质量分数分别控制在6%~8%、6%和5%~10%,钙铝比控制在1.4~1.6时,钢中[O]质量分数可控制在10×10-6,且该精炼渣系对Al2O3有较好的吸附性。在确保精炼脱氧的同时,降低钢液二次氧化,达到IF钢洁净冶炼目的。  相似文献   

19.
曾亚南  孙彦辉  蔡开科  徐蕊 《钢铁》2014,49(9):38-43
 基于BOF→RH→CSP生产工艺,研究了RH精炼过程钢中夹杂物类型演变及MgO?Al2O3夹杂物形成规律,同时对MgO?Al2O3夹杂物的形成条件进行了热力学计算,借助CFD数值模拟软件研究了RH精炼过程卷渣行为。研究发现,RH精炼过程20和30 min时,[w([MgO])/w([Al2O3])]为0.005~0.020,未发现MgO?Al2O3夹杂物;RH出站后夹杂物[w([MgO])/w([Al2O3])]为0.3~0.5,且RH精炼结束后MgO?Al2O3夹杂物占夹杂物总量的58.4%;另外,RH精炼过程钢液表面速度CFD模拟结果为0.57 m/s,大于临界卷渣速度0.45 m/s,且顶渣成分与夹杂物成分相近,存在卷渣现象。热力学计算表明,钢液与炉渣平衡时钢中[w([Al])]为0.31%~0.37%,[w([Mg])]为0.000 24%~0.000 28%,在MgO?Al2O3生成区域之内。减少RH处理过程卷渣,浇铸过程下渣及控制顶渣和包衬相中MgO质量分数可抑制MgO?Al2O3夹杂物形成。  相似文献   

20.
渣组成对钢水洁净度的影响   总被引:2,自引:0,他引:2  
陈斌  姜敏  包萨日娜  王新华 《钢铁》2008,43(8):35-0
 在实验室基础上对比研究了w(CaO)/w(SiO2)为5、w(Al2O3)为25%的渣系A,w(CaO)/w(SiO2)为8、w(Al2O3)为46%的渣系B,与高强度合金结构钢液在1600 ℃条件下反应90 min后钢水洁净度的变化,研究结果表明:随着渣系由A到B,钢中总氧质量分数平均值由12.25×10-6降低到9.25×10-6,硫质量分数平均值由19×10-6降低到8.63×10-6,炉渣的硫分配系数LS由7~17增加到120~260;渣系A、渣系B与合金钢液反应后钢中夹杂物大部分是钙镁铝硅酸盐类夹杂,并且得出渣系B精炼条件下钢中这类夹杂熔点明显低于渣系A精炼条件下的此类夹杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号