首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
氢冶金是一种绿色低碳的冶炼工艺,是实现钢铁行业转型升级和改变高碳排放形象的有效途径。氢冶金是通过纯氢气或富氢气体替代传统焦炭直接还原铁,可实现CO2减排。富氢还原性气体的制备是实现氢冶金的关键之一。对比分析了适合于氢冶金的规模化焦炉煤气制氢、天然气制氢、煤制氢和氨分解制氢技术的工艺及相关催化剂,探讨了包括电解水制氢在内的可再生能源制氢的途径。氢冶金技术需要的制氢技术日趋成熟,氢冶金也将成为未来钢铁行业升级改造的重点。  相似文献   

2.
李峰  储满生  唐珏  柳政根 《中国冶金》2021,31(9):104-109
氢冶金是中国钢铁行业实现低碳绿色化转型升级的有效途径之一,基于煤制氢技术的气基竖炉-电炉短流程是一种典型的氢冶金工艺,具有广阔的发展前景。采用生命周期评价法(LCA)对煤制氢-气基竖炉-电炉短流程环境影响进行了分析,并对比研究了短流程与传统高炉-转炉(BF-BOF)长流程的环境性能。结果表明,煤制氢-气基竖炉-电炉短流程LCA结果为2.56×10-11,其中GWP100(全球变暖潜值)和POCP(光化学臭氧合成潜值)分别贡献54.16%和36.76%;煤气脱碳和电炉电能消耗是造成碳排放和能源消耗的主要原因;短流程整体评价结果仅为BF-BOF流程的27.41%,吨钢CO2排放和能耗可分别减少53.75%和47.45%,环境性能明显优于传统长流程。  相似文献   

3.
针对钢铁行业CO2减排严峻的问题,本文首先系统梳理了长流程炼钢各工序的CO2排放特征,得出石灰窑烟气、烧结烟气、炼焦煤气、高炉煤气、转炉煤气中CO2的体积分数分别为10%~40%、7%~10%、2%~4%、9%~12%、15%~20%;接着研究分析了碳替代与碳捕获等控碳技术,以及CO2资源化利用技术,得出高炉富氢冶炼和富氢气基竖炉是我国氢冶金发展的两大主要方向,应重点采用化学吸收法进行CO2捕获,在CO2综合利用上,重点考虑针对钢厂特殊工序,CO2作为搅拌、控温、覆盖保护、稀释气等发挥作用;最后结合某4×106 t/a钢卷产能的长流程钢铁企业开展的CO2捕获及综合利用项目分析了相关技术推行的可行性。本文可为国内钢铁行业科学精准有序降碳提供借鉴。  相似文献   

4.
热压块铁(HBI),品位在92%~93%,具有高纯净、低有害杂质、品质均匀、强度高、粉化率低等优点,直接装入高炉,可提高铁水产量,同时也可降低高炉单耗,节焦、增产效果明显。以国内某1 580 m3高炉为研究对象,建立了高炉工序的CO2排放计算模型,计算出高炉工序CO2排放量为1192.109 kg/t铁,吨铁CO2排放量为1618.96 kg。对高炉工序CO2排放量计算结果分析,焦炭的CO2排放量高达73.52%,要降低CO2的排放的关键在于减少焦炭的使用。随着加入热压铁块的量增大,吨铁CO2减排量增大,从而实现了减少CO2排放。  相似文献   

5.
钢铁联合企业CO2排放研究综述   总被引:1,自引:0,他引:1  
摘 要:回顾了近年来国内外研究钢铁联合企业CO2排放的文献,建立了钢铁生产过程碳素流模型;总结和分析了钢铁联合工业影响CO2排放因素;介绍了国外利用reMIND和CLPEX建立的过程集成优化分析生产成本和CO2排放量的模型;总结了钢铁联合企业CO2排放量的估算方法和注意事项;提出我国钢铁联合企业目前应该加快建立适合本国钢铁联合企业温室气体排放计算标准和方法;展望了钢铁联合企业研究CO2排放的研究方向。  相似文献   

6.
 中国政府高度重视气候变化问题,积极主动地做出了减排承诺。钢铁行业作为工业的重要领域,是能源消费大户,同时也是CO2排放大户。对中国钢铁工业CO2排放现状分析表明,中国钢铁工业吨钢CO2排放量下降明显,CO2排放总量在2014年已经达到峰值,随后呈下降趋势,但由于粗钢产量巨大,钢铁工业的CO2排放量占全国CO2排放总量仍然较高,必须走脱碳化发展的道路。通过对钢铁工业脱碳化发展策略和技术的分析,表明有策略地推进并提高全废钢电炉流程的比例是当前最为实际的钢铁工业脱碳化发展途径。  相似文献   

7.
高炉喷吹富氢燃料是减少碳排放的有效措施之一,但喷吹富氢燃料产生的H2O会造成焦炭的劣化。对比分析了不同温度下焦炭与CO2和H2O反应过程中,焦炭强度、两者的交互作用及微观结构的变化。分析结果表明:与H2O反应溶损率SLR约为与CO2反应SLR的2~5倍,温度升高,二者SLRR差距缩小;焦炭反应后强度CSRR随着温度的升高而降低,且SLR与CSR呈现负相关性;当H2O/CO2>1时,焦炭与C02-H2O反应产生明显的交互作用;无论是焦炭与CO2还是与H2O发生溶损反应,微观形貌均表现为边缘部位溶损更严重;相比与CO2反应,焦炭与H2O反应在边缘更为剧烈,但内部气孔破坏较小。  相似文献   

8.
 由于全球气候变暖,CO2的减排逐渐成为人们关注的热点。钢铁工业作为CO2排放大户,需要严格控制其CO2的排放量,富氢炼铁由于具有降低碳排放的特点,已经成为冶金工艺未来发展趋势,但富氢燃料的使用会在高炉内产生大量水蒸气,所以研究高炉中不同种类焦炭与CO2-H2O混合气体在气化溶损反应下的变化至关重要,可以为高炉富氢冶炼条件下焦炭的选择和质量的控制提供理论依据。通过研究不同含量CO2-H2O气体通入管式炉中与捣固焦和顶装焦发生深度气化溶损反应,分析CO2-H2O混合气体中水蒸气含量变化产生的气化反应溶损差异、焦炭有机官能团和碳素结构的变化规律以及利用未反应核模型分析气化反应过程中限制性环节。研究结果表明,两种焦炭气化反应的限制性环节为界面化学反应,通过对比顶装焦和捣固焦颗粒气化溶损过程中边缘、中间、中心隙结构和相对密度上的差异发现,随着CO2-H2O混合气体中水蒸气含量的增加,两种焦炭表面溶损反应较其他两部分更加严重,出现了明显的开孔现象,并且捣固焦的内部开裂情况更加严重。结合FT-IR分析可知,水蒸气能够加剧气化反应过程中顶装焦和捣固焦结构内脂肪族官能团和甲基的消耗,从而导致两种焦炭的芳香度升高,同时反应后捣固焦样品中芳香烃的缩合程度增加。  相似文献   

9.
实现钢铁生产中CO2排放的准确量化和计算是分析评估其环境影响及各种减排技术的基础和保障.基于Y钢厂2015年的实际生产数据,分别利用国内推荐的投入产出法和国际钢铁协会推荐的生命周期法计算了Y钢厂的吨钢CO2排放量.计算结果表明:生命周期法计算的Y钢厂的吨钢CO2排放量为2.183 t CO2,明显高于国内推荐的投入产出法计算的Y钢厂的吨钢CO2排放量1.940 t CO2,这主要是由于钢铁协会提出的计算方法统计项目更为丰富并且考虑了物料和能源的上游产生的二氧化碳排放.结合《温室气体排放核算与报告要求》计算方法和国际钢铁协会所提出的计算方法,从计算边界、排放因子、物料和能源分类以及评价基准线层面提出了一套基于全生命周期方法的符合中国钢铁企业国情的温室气体排放计算方法.   相似文献   

10.
钢液真空循环脱气法(RH)精炼能够利用高真空和钢液循环流动有效脱气和去除夹杂物。同时,炼钢环境下 CO2可与钢液中[C]反应生成CO提高搅拌强度。因此,本文提出将CO2作为RH提升气进行真空精炼。针对CO2在RH精炼过程的冶金反应行为特性,通过热力学理论分析了极限真空条件下CO2脱碳的有利条件及限度,同时搭建了CO2作RH提升气工业试验平台,通过工业试验对比研究了CO2/Ar分别作提升气时对钢液精炼过程的影响。结果表明,若单纯考虑CO2与碳反应,则当钢液中[C]低于1.8×10?6,CO2仍然具有氧化碳元素的能力。然而,CO2对钢液中碳铝元素存在选择性氧化,当铝含量低于一定程度时,CO2主要参与脱碳反应;反之,CO2则会造成一定铝损,因此若采用新工艺需考虑铝合金加入时机以及加入量。此外,CO2用作RH提升气可获得与Ar效果相当甚至更优的脱氢效果,喷吹同等量CO2并未造成钢液的大幅温降,因此CO2完全有潜力作为RH提升气,进而完成精炼。   相似文献   

11.
柴锡翠  岳强  张钰洁  王琦 《钢铁》2022,57(4):138-147
钢铁工业是中国国民经济发展的重要基础产业,在中国"碳达峰、碳中和"的背景下,低碳生产已成为钢铁行业新的竞争力.环境意识的日益提高迫切需要开发创新技术,氢冶金在炼铁环节利用清洁和可再生能源,是全世界公认的最清洁环保的冶金技术.H2的利用可以减少炼铁过程产生的温室气体,从源头上减少碳还原剂带入的排放.氢冶金竖炉的数值模拟是...  相似文献   

12.
Fossil-fuel burning greenhouse gas induced global warming has been recognized as global environmental problems,reduce and ultimately control the energy production in the use of CO2 emissions, global energy production will be a major challenge.As a highly intensive materials and energy,iron and steel enterprises,need to be invested to produce one ton of steel about two tons of material and 0.7 t of standard coal energy,and while producing two tons of CO2.Therefore,reducing CO2 emissions from iron and steel industry has become the focus of the global steel industry.This paper describes an integrated domestic and international measures to control carbon dioxide emissions research progress and future technology trends, with emphasis on the domestic steel industry emissions of carbon dioxide status of technology development and industrialization of implementation of the proposed on this basis,including dry quenching technology, gas,power generation,coal moisture control technology,blast furnace injection plastics technology,the use of coking process for treating municipal waste plastics technology,sintering heat generation,low pressure saturated steam for power generation,metallurgical slag heat recovery technology,coke oven gas hydrogen technology and the other key technologies energy saving technologies,including the development,promotion and popularization of the steel industry in China will be the CO2 emission reduction technology direction and focus.At this stage,the Chinese steel industry can be improved the energy efficiency and recycling of waste heat and energy,reduce unit GDP,CO2 emissions;but in the long run,should increase CO2 capture and storage on the input of technology can possible effective control of the adverse effects of CO2 emissions.  相似文献   

13.
围绕“以氢代碳”对钢铁工业中实现碳减排工艺进行了梳理和溯源。实现碳减排的途径需要发展以氢气作为还原剂的氢冶金工艺。目前世界主要钢铁产区发展了从高炉喷吹燃料工艺到高炉富氢冶炼工艺、从非焦冶炼工艺到全氢直接还原工艺等两大氢冶金技术路线。从各国远景规划来看,发展氢基直接还原工艺及电炉炼钢短流程是氢冶金技术的重要方向。同时在低成本绿氢技术突破前,使用焦炉煤气等灰氢是中国从“碳代替”到“氢冶金”的重要过渡。  相似文献   

14.
钢铁工业在全球范围内造成了大量的二氧化碳排放。为了减少碳排放和解决冶金用能,提出了“风光互补非碳冶金”的概念,希望依靠风能和太阳能清洁能源技术为钢铁生产提供能量,实现一条不涉及碳排放的冶金工艺流程。该冶金系统设计由四项技术单元组成,通过理论计算、数值模拟和试验结果反馈,最终确立的系统单元之间基本满足了能量的协调匹配,能够获得1 600 ℃以上的冶炼高温,达到了试验的预期,是清洁能源利用技术与钢铁冶金技术相融合解决能源及环境问题的初步性尝试。  相似文献   

15.
综述了中国钢铁工业的现状,指出我国重点大、中型钢铁企业的生产工艺技术已经达到了一个“临界”的状态,继续努力即可形成自主创新的钢铁冶金工艺。阐述了在过去的50年里,钢铁工业从工艺技术走向工程科学的进程,其中包括从平衡态的钢液还原和精炼到不平衡态的凝固和轧制方面的发展。钢铁工业在21世纪要生存、发展,就必须成为循环经济的示范产业。在循环经济思想指导下,开发新工艺、新技术、新型钢铁产品以及新型的冶金装备的设计能力和集成制造能力,把中国由一个钢铁大国建成钢铁强国。  相似文献   

16.
摘要:中国钢铁工业的流程结构特点是高炉—转炉长流程占主导,能源结构特点是以煤炭为主,因此造成吨钢CO2排放量高于世界平均水平,碳减排压力巨大。为探究中国钢铁工业的低碳现状与发展趋势,通过对流程结构、废钢资源、低碳技术、碳交易市场等进行深入分析,认为钢铁工业实现2030年碳达峰、2060年碳中和的“双碳”目标是一个长期的、多因素综合作用的过程,不同阶段应确立不同的研究重点,并就未来发展提出了自己的建议。钢铁工业下一步应该加快低碳技术发展、提高电炉短流程比例、重视氢冶金技术研发,并充分发挥政策和市场调节作用,最终摆脱碳冶金依赖,走向低碳化钢铁之路。  相似文献   

17.
The process structure of China′s steel industry is dominated by the BF BOF steelmaking process, and the energy structure is dominated by coal, which causes CO2 emissions per ton product higher than the world average level, and the pressure of CO2 emission reduction is great. In order to explore the low carbon status and development trend of China′s steel industry, multiple perspectives such as production process structure, scrap resources, low carbon technology and carbon trading market were analyzed deeply, coming to the conclusion that achieving the “dual carbon” goal of CO2 emissions peak before 2030 and carbon neutrality before 2060 is a long term and multi factor comprehensive process, the steel industry should establish different research priorities at different stages. At the same time, suggestions for further development are put forward. In the next step, China′s steel industry should accelerate the development of low carbon technology, increase the proportion of EAF steelmaking process, pay attention to the research and development of hydrogen metallurgy technology, and give full play to the role of policy and market regulation, finally get rid of the dependence of carbon metallurgy and embark on the road of low carbon steel.  相似文献   

18.
基于全过程分析和情景分析建立耦合模型,从中国钢铁工业的发展模式和政策角度,结合中国当前成熟的节能减碳技术,分析中国钢铁工业CO2的低碳发展模式和相关政策,并探讨未来中国钢铁工业CO2的最优减排量和优化技术路线。分析结果表明:若控制好经济发展和钢产量速度,实施提出的减碳技术路线,与2010年相比到2020年中国钢铁工业在焦化、烧结、炼铁、转炉、电炉和轧钢工序单位产品可减少CO2排放量分别为77.33、4.4、7.13、54.36、116.2和42kg/t;若同时保证相关末端处理技术的实施,到2020年吨钢CO2排放量为1.49t。可见,建立中国钢铁工业的低碳发展模式,主要在于促进相关成熟技术利用的政策调整,该发展模式可为中国钢铁行业的持续发展提供一定的理论依据。  相似文献   

19.
 The global steel production has been growing for the last 50 years, from 200 million metric tons in 1950s to 1,240 million metric tons in 2006. Iron and steelmaking industry is one of the most energy-intensive industries, with an annual energy consumption of about 24 EJ, 5% of the world's total energy consumption. The steel industry accounts for 3-4% of total world greenhouse gas emissions. While enhancing energy efficiency could be a short-term approach for the steel industry to reduce greenhouse gas emission, the long-term approaches to achieve a significant reduction in CO2 emissions from the steel industry would be through (1) developing and applying CO2 breakthrough technologies for iron and steelmaking, and (2) increasing use of renewable energy (in particular, bio-energy) for iron and steelmaking. This paper presents an overview of new CO2 breakthrough technologies for iron and steelmaking, and the current research and development for the use of biomass and bio-fuels as substitutes for coke, coal and natural gas in various iron and steelmaking processes including iron-ore sintering, blast furnace operations, and new iron and steelmaking processes. The key challenges for utilization of bio-energy on a large scale for iron and steelmaking are also discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号