首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
采用弛豫-析出-控制相变(RPC)工艺,对超低碳贝氏体(ULCB)实验钢进行了不同变形温度、不同弛豫时间、不同变形速率的热模拟试验.利用金相显微镜、SEM、TEM对钢的显微组织进行观察,分析热变形参数对钢显微组织的影响,研究发现:在800~850℃之间变形且弛豫50 s后的ULCB钢能够获得约0.5μm宽板条贝氏体组织,其上有大量的高密度位错缠结与Nb(CN)粒子析出.变形速率对ULCB钢的微观组织影响不大.  相似文献   

2.
利用本钢Gleeble-2000热/力模拟试验机结合本钢薄板坯连铸连轧生产线生产低碳含Nb钢X46的生产工艺,对不同Nb含量的低碳钢进行单道次压缩实验.考虑了钢中Mn和Nb的影响,回归了变形抗力模型.现场数据和热模拟实验结果表明:管线钢X46的再结晶终止温度为981.3 ℃.薄板坯连铸连轧粗轧阶段的动态软化率接近于1.考虑动态再结晶以及未再结晶区的应变累计,计算的变形抗力与现场实测的变形抗力吻合良好.表明该模型能够预测薄板坯连铸连轧生产线生产低碳含Nb钢的变形抗力.  相似文献   

3.
通过热模拟试验,研究了变形温度、变形速率、变形程度对12Cr2Mo1R钢变形抗力的影响,结果表明,在较低的温度和较高的变形速率下,12Cr2Mo1R钢变形抗力增加显著;在同一下变形程度下,随温度的升高,变形抗力降低。变形温度为800℃、变形速率为15 s-1时,变形抗力最大值为290 MPa;变形温度为1050℃、变形速率为1 s-1,变形抗力最小值为110 MPa。  相似文献   

4.
用Gleeble-1500D热模拟试验机和电子显微镜研究了在950~750℃不同温度下变形50%后0.05C- 0.13Nb钢的组织和析出相。结果表明,随变形温度由950℃下降至750℃,0.05C-0.13Nb钢中多边形铁索体含量(体积分数)由20%增至80%,多边形铁素体晶粒尺寸由9μm降至4μm;变形后的组织由多边形铁索体、粒状贝氏体和1~3μm马氏体/奥氏体岛组成;钢中的析出物为1~10 nm的Nb(C,N),随变形温度降低析出物数量增加。  相似文献   

5.
在Gleeble-3500热/力模拟试验机上对HW600钢进行高温压缩试验,研究在不同试验条件下的变形抗力.试验结果表明:变形温度对变形抗力的影响最为显著,在相同的变形速率下,随着变形温度的升高,变形抗力降低;在同一变形温度下,变形速率增大,变形抗力增加;在同一变形温度、变形速率下,随着变形程度的增加,变形抗力急剧增大,真应变达到0.1后,变形抗力增加趋势变缓.  相似文献   

6.
刘自权  马子洋 《河北冶金》2020,(8):32-34,79
在对高强IF钢HC210IF、HC250IF热轧变形抗力热模拟试验及金相组织检测的基础上,分析了不同轧制温度对变形抗力及金相组织的影响。结果表明,高强IF钢热轧变形抗力随轧制温度的升高均呈现先递减后递增的趋势,且轧制温度在850℃时变形抗力均达到最低点; 900℃高温轧制时,其微观组织中晶粒更加细小均匀,低温铁素体区轧制时晶粒粗大且大小不均。  相似文献   

7.
通过Thermecmastor-Z热模拟试验机,在900-1 050℃以变形速率1-20 s-1、真应变0-0.7研究了晶粒尺寸800μm的铌钢(%:0.05C、1.44Mn、0.13Nb)奥氏体控轧过程的变形抗力,并建立了变形抗力的回归方程。试验结果表明,随温度增高,铌钢在奥氏体区变形抗力递减;在同一温度下,随变形程度增加,钢的变形抗力增加;同时在给定变形程度下,变形抗力随变形速率增大而增大;变形抗力回归方程计算值与实测值相差≤5 MPa。  相似文献   

8.
焦金华  张强 《钢铁》1993,(5):33-38,32
本文通过热模拟试验测定了不同形变条件下A3F钢的变形抗力、并利用电子显微镜和光学显微镜,观察了不同变形温度。不同变形速度以及不同变形程度的热模拟试样的微观组织,分析了形变条件对A3F钢的变形抗力及组织的影响。  相似文献   

9.
研究了稀土Ce对对IF钢的的高温变形行为的影响。在Gleeble~(-1)500D热模拟试验机上将不同铈含量IF钢在真空条件下,以10℃/s加热到1 250℃,均温5 min,然后以5℃/s的分别冷却到1 100℃、1 000℃、900℃、800℃,保温30 s,再分别以10~(-2)s~(-1)、1 s~(-1)进行压缩50%,最后沿纵向切开,观察压缩后组织。结果表明:IF钢以低应应变速率变性时动态再结晶是主要的软化机制,以高应变速率压缩时动态回复是主要的软化机制;IF钢的变形抗力随稀土铈含量的增加而增大;铈对再结晶具有抑制作用。  相似文献   

10.
王庆敏  刘鑫 《特殊钢》2020,41(1):12-15
利用Gleeble-2000热模拟试验机对Q345GJC钢(/%:0.16C,0.36Si,1.37Mn,0.026Nb)进行了单道次压缩试验,实测了试验钢900~1 150℃、真应变0.8~1.2、应变速率0.1~1 s-1的变形抗力,分析了各工艺变形参数对试验钢动态再结晶和变形抗力的影响。确定了试验钢的动态再结晶激活能为245.448 kJ/mol(峰态时)和166.994 kJ/mol(稳态时),并建立了试验钢高温变形抗力的数学模型。该模型具有良好的曲线拟合特性,用该模型计算的结果与实测值吻合较好。  相似文献   

11.
一种建筑用耐火钢变形抗力模型的建立   总被引:1,自引:0,他引:1  
利用Gleeble-1500热模拟试验机对一种建筑用耐火钢进行了压缩试验,分析了变形温度、变形速率以及变形量对变形抗力的影响;在变形抗力σ与温度T的关系中,考虑了应变ε和应变速率ε的影响;在应变速率ε的影响指数中,考虑了温度的影响,建立了一种含Nb、Ti等微合金元素建筑用耐火钢应力峰值前的变形抗力模型。  相似文献   

12.
利用Gleeble-1500热模拟试验机对Q235钢的金属塑性变形抗力进行试验研究,在实测不同变形温度、变形速率、变形程度与变形抗力关系的基础上,建立了金属塑性变形抗力的数学模型.通过对模型进行回归分析.证明该模型具有良好的曲线拟合特性,为计算其他力学参数提供了理论计算依据.  相似文献   

13.
乔秉诚 《山西冶金》2012,35(1):10-13,47
在Gleeble-1500热模拟试验机上进行热-力模拟试验,得到实验数据并分析试样的热塑性、变形抗力,并利用金相显微镜对其进行金相组织的分析。在950~1 200℃温度区间进行高温拉伸试验,绘制出样品的热塑性曲线与热强度曲线,通过热塑性曲线说明在950~1 200℃范围内具有良好的塑性,通过热强度曲线可以观察到屈服强度随温度的升高而降低;在变形温度为950~1 200℃,应变速率为0.1,1,5和10 s-1时进行高温压缩试验,绘制出真应力-应变曲线和变形抗力曲线,结果显示,变形抗力随应变量的增大而迅速达到最大值,而后趋于平缓,随着温度的升高,变形抗力呈下降的趋势。  相似文献   

14.
研究了一种700 MPa微合金高强钢。在热力模拟试验机上进行了试验钢的单道次压缩试验,通过其各种变形参数的研究,建立了试验钢的变形抗力数学模型和动态再结晶模型。试验结果显示:试验钢在变形温度为950℃,应变速率为0.1 s-1;变形温度为1 000℃,应变速率为0.1 s-1;变形温度为1 050℃,应变速率为0.1s-1或1 s-1;变形温度为1 100℃,应变速率为0.1 s-1、1 s-1或5 s-1这几种条件下会发生动态再结晶。  相似文献   

15.
Q690高强钢板可采用低碳成分设计和“在线淬火+回火”工艺实现批量生产.针对不同韧性要求,选择了Q690D钢加Cr和Q690E钢加Ni两种合金成分设计方案,并对两种成分设计情况下的变形抗力进行研究以及对比分析.发现加Cr钢的变形抗力随温度变化比加Ni钢更明显.在700~750℃温度范围内,变形抗力下降较快,超过750℃时,变形抗力的下降速度明显减慢.变形程度小于0.4时,变形抗力随变形量的增加而快速上升;变形程度大于0.4时,变形抗力增加逐步平缓.  相似文献   

16.
变形温度对ULCB钢动态再结晶的影响   总被引:1,自引:0,他引:1  
取得800 MPa级和900 MPa级ULCB钢,在1100~850℃进行单道次变形的热模拟试验,变形量为40%,应变速率为2 s-1。将应力-应变变化特征和显微组织观察相结合,分析研究变形温度对ULCB钢奥氏体动态再结晶的影响规律。结果表明,温度低于950℃时以形变硬化和动态回复为主,奥氏体形变再结晶主要发生在1000℃以上的高温变形中;奥氏体再结晶百分数随变形温度升高而增加,在1050℃变形后奥氏体再结晶百分数约40%,在1100℃变形后则发生完全再结晶。  相似文献   

17.
熊钰梅 《四川冶金》2008,30(2):30-34
利用Gleeble-1500热模拟试验机对攀钢各系列典型钢种进行了卷取温度区间(400~800℃)变形抗力的试验研究,得到变形抗力试验曲线及图表,并分析了变形温度、变形速率、变形程度对变形抗力的影响,为攀钢热轧三期改造中卷取机力能参数的确定及卷取工艺制度的优化提供依据.  相似文献   

18.
在Thermecmastor-Z热模拟试验机上对0.045%Ti-0.003%C的Ti-IF钢进行700-950℃、应变0~0.7、应变速率1~70 s-1条件下的热模拟实验,以分析温度、应变速率和应变量对变形抗力的影响.用BP(backpropagation)网络神经算法给出了Ti-IF钢在800~875℃变形抗力预报模型.通过对模型预报值和实验数据实测值的比较得出,变形抗力相对误差在4.0%以内.  相似文献   

19.
本文通过Gleeble-1500热模拟机进行单道次压缩试验研究了热轧DP600双相钢低温点和高温点的变形抗力规律,分析了变形温度、变形速率、变形量对变形抗力的影响。结果表明,温度是最主要的影响因素,变形抗力随温度的升高而降低;随变形速率和变形量的增加而增大。对实验数据进行了回归计算,得到了精确度较高的低温点(500~700 ℃)和高温点(700~1200 ℃)周纪华-管克智变形抗力数学模型。该模型可以为实际生产提供指导。  相似文献   

20.
X52管线钢热变形行为的研究   总被引:1,自引:0,他引:1  
用Gleeble-3500热模拟试验机对X52(L360)管线钢(%:0.08C、0.20Si、0.93Mn、0.024Als、0.02Nb、0.02Ti)在950~1200℃、应变速率0.01~10 s-1时进行50%热压缩变形试验,得出真应力-应变曲线。通过回归分析,确定X52钢热变形激活能和热变形方程,得出应变速率、温度和Z参数对热形变峰值应力的影响。结果表明,变形温度降低,峰值应力增加并向应变增大方向移动,随变形速率增加,峰值应力增大并且也向应变增大方向移动;X52钢热变形激活能为232 kJ/mol;随Z参数增加,热变形峰值应力增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号