首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
采用大涡模拟方法对直方管内的湍流流动进行了研究,对比计算了进口处为均匀来流和非均匀来流三种工况。从瞬时速度、脉动速度和平均速度分布等方面对湍流流动进行了分析。计算结果表明:入口处均匀来流和非均匀来流在横截面都会产生二次流运动;四个角域强化了壁面流体和主流流体的动量交换;在平均雷诺数相同情况下.非均匀来流时湍流程度大,各方向湍流脉动加强,横截面二次流加强,出现多个复杂的涡流区.瞬时流场结构、涡结构要复杂得多。  相似文献   

2.
采用大涡模拟方法对直方管内的湍流流动进行了研究,对比计算了进口处为均匀来流和非均匀来流三种工况。从瞬时速度、脉动速度和平均速度分布等方面对湍流流动进行了分析。计算结果表明:入口处均匀来流和非均匀来流在横截面都会产生二次流运动;四个角域强化了壁面流体和主流流体的动量交换;在平均雷诺数相同情况下,非均匀来流时湍流程度大,各方向湍流脉动加强,横截面二次流加强,出现多个复杂的涡流区,瞬时流场结构、涡结构要复杂得多。  相似文献   

3.
This study proposes a method of predicting hemolysis induced by turbulent shear stress (Reynolds stress) in a simplified orifice pipe flow. In developing centrifugal blood pumps, there has been a serious problem with hemolysis at the impeller or casing edge; because of flow separation and turbulence in these regions. In the present study, hemolysis caused by turbulent shear stress must occur at high shear stress levels in regions near the edge of an orifice pipe flow. We have computed turbulent shear flow using the low-Reynolds number k-epsilon model. We found that the computed turbulent shear stress near the edge was several hundreds times that of the laminar shear stress (molecular shear stress). The peak turbulent shear stress is much greater than that obtained in conventional hemolysis testing using a viscometer apparatus. Thus, these high turbulent shear stresses should not be ignored in estimating hemolysis in this blood flow. Using an integrated power by shear force, it is optimal to determine the threshold of the turbulent shear stress by comparing computed stress levels with those of hemolysis experiments or pipe orifice blood flow.  相似文献   

4.
应用Fluent软件对密相干塔模拟仿真,研究了烟气整流系统和链式搅拌器对烟气流场和湍流、循环灰轨迹及系统压力损失的影响,并在模拟工况下确定了烟气整流系统较优导流板布置形式.研究结果表明,链式搅拌器能够显著增大塔内附近区域的湍动能,提高转速不能明显提高整体烟气湍流强度,双层链式搅拌器可以增大高湍流强度区且减缓其衰减速度,该工况下安装双层链式搅拌器,转速为100 r·min-1较为理想,此时密相干塔能够实现烟气均布和气固充分接触,大部分颗粒参与内循环,少部分进入除尘器,系统压损约为200 Pa.   相似文献   

5.
湍流控制器结构对中包流场影响的数模研究   总被引:1,自引:1,他引:0  
根据某厂连铸中间包结构和操作工艺参数,选择LAM和Bremhorst修正的低雷诺数κ-ε湍流模型,建立了描述钢液流动的数学模型,用PHOENICS软件进行了模拟计算,讨论了湍流控制器结构对中间包流场的影响,指出湍流控制器的结构对中间包内流场的影响较大,其中环形带顶缘的湍流控制器最有利于中间包内钢液流动特性的改善,环形部分的曲率半径影响钢液的流动情况。  相似文献   

6.
The transient turbulent flow in continuous casting steel plays a key role in minimizing defects. Compared with the k-ε model, the large eddy simulation (LES) of turbulence provides much more accurate representation of turbulent flow by resolving large-scale dynamics. The turbulent flow in a liquid metal model of continuous casting has been simulated by LES and measured using ultrasonic Doppler velocimetry (UDV). The result of measurement and LES has been compared to validate the LES model and furthermore enhance the understanding of the transient turbulent feature in the flow field. The results show that the jet exiting from the nozzle port swings, which is not steady, and turbulent velocity variation frequencies decreased with distance from the nozzle port region and also the LES mode can capture the high frequency fluctuation, which the measurement cannot detect.  相似文献   

7.
A developing boundary layer starts at the spillway crest until it reaches the free surface at the so-called inception point, where the natural air entrainment is initiated. A detailed reanalysis of the turbulent velocity profiles on steep chutes is made herein, including mean values for the parameters of the complete turbulent velocity profile in the turbulent rough flow regime, given by the log-wake law. Accounting both for the laws of the wall and the wake, a new rational approach is proposed for a power-law velocity profile within the boundary layer of turbulent rough chute flow. This novel approach directly includes the power-law parameters and does not require for a profile matching, as is currently required. The results obtained for the turbulent velocity profiles were applied to analytically determine the resistance characteristics for chute flows. The results apply to the developing flow zone upstream of air inception in chute spillways.  相似文献   

8.
Detailed experiments on vertical turbulent plane jets in water of finite depth were carried out in a two-dimensional water tank. The jet velocities were measured with a laser Doppler velocimeter (LDV). The LDV measurement covers the entire flow regime: the zone of flow establishment (ZFE), the zone of established flow (ZEF), the zone of surface impingement (ZSI), and the zone of horizontal jets (ZHJ). From the experimental results, the following conclusions are reached. First, the jet flow is independent of the Reynolds number if the Reynolds number is sufficiently large to produce a turbulent jet. Second, in the initial ZFE, the jet flow is nonsimilar and is characterized by the two free shear layers along the two edges of the jet orifice. Third, the jet flow in ZEF is self-similar. Both mean and fluctuation velocities are scaled with the mean jet centerline velocity. The turbulent shear stress is predictable by Prandtl's third eddy viscosity model. The spreading of the confined vertical jets is larger than that of a free jet, so is the faster decay of jet centerline velocity. Fourth, in ZSI the jet flow is nonsimilar and high turbulent intensities were found. The vertical turbulent jet transforms into two opposite horizontal surface jets after the impingement. And finally, the maximum velocity of the horizontal surface jet in ZHJ decays according to a power law.  相似文献   

9.
Q215钢棒材热轧后湍流冷却过程温度场数值模拟   总被引:1,自引:0,他引:1  
利用湍流管式冷却系统可以提高棒材热轧后冷却效率,使棒材表面形成回火马氏体,提高其力学性能。运用有限元分析软件MSC.Marc分析了Φ25 mm Q215钢棒材热轧后湍流冷却过程的温度场。结果表明,棒材离开湍流式冷却系统1 s时,棒材表面由950.0℃(终轧温度)降至768.0℃,芯部温度降至861.2℃;棒材离开湍流式冷却系统后,空冷3 s时表面温度升至792.6℃。生产应用结果表明,棒材进行普通冷却后的强度极限为310 MPa,用湍流式3段冷却后棒材的强度极限达410 MPa。  相似文献   

10.
采用了一种新的混合LES-RANS(大涡模拟-雷诺平均模型)湍流模型模拟结晶器中钢液的流场.模型通过修正湍流黏度系数对水口和结晶器内湍流进行过滤,对大尺度的湍流直接采用Navier-Stokes方程求解计算,对小尺度的脉动采用标准k-ε模型进行计算.该模型能避免RANS的过分耗散并且能捕捉到更多的瞬态湍流信息.模型通过对连铸结晶器内液态金属GaInSn模型速度进行测量验证,速度测量方法为超声波多普勒测速仪(UDV)测速法.新模型与实验测量值吻合程度明显好于RANS模拟的结果,能更准确地预测结晶器和水口内的湍流行为.结晶器内瞬态流动特征表明,水口两侧流体呈周期性的偏流,周期约为5s.   相似文献   

11.
本文对行波磁场净化液态金属技术中金属液流动现象的产生进行了模拟试验和理论分析,指出流动产生的根本原因是金属液受力不均匀。对影响电磁力均匀化的几个参数进行了测定和讨论,并提出了相应的抑制流动的措施。  相似文献   

12.
Pressurization in sanitary sewer conduit atmosphere is modeled using computational fluid dynamics techniques. The modeling approach considers both turbulent and laminar flow regimes. The turbulent model takes into consideration the turbulence-driven secondary currents associated with the sewer headspace and hence the Reynolds equations governing the air flow field are closed with an anisotropic closure model which comprises the use of the eddy viscosity concept for the turbulent shear stresses and semiempirical relations for the turbulent normal stresses. The resulting formulations are numerically integrated. The turbulent model outputs are verified with experimental data reported in the literature. Satisfactory agreement is obtained between numerical simulations and experimental data. Mathematical formulas and curves as functions of longitudinal pressure gradient, wastewater velocity, and sewer headspace geometry are developed for the cross-sectional average streamwise velocity.  相似文献   

13.
 应用粒子成像测速技术(PIV)对平焰燃烧湍流场及其对应的冷态流场进行了测量,对热态流场与相应冷态流场进行了对比分析。结果表明,与冷态流场相比,燃烧状况下流场的回流区宽度增加,回流速度明显增大;附壁射流区厚度变薄,附壁射流区内的径向速度持续增加。实验表明,在湍流燃烧中冷态流场模拟与实际燃烧过程的流动存在较大差异。由于燃烧使气体温度升高体积膨胀产生的推力对流场有很大影响,是不能忽略的。  相似文献   

14.
A new analytical expression for velocity profile in a fully developed turbulent boundary layer above a porous surface subject to flow injection is derived by solving the coupled Reynolds equations and turbulent kinetic energy equation. The advection of turbulent kinetic energy is considered during the derivation, whereas the earlier studies have neglected it. The new solution reduces to the universal logarithmic law in the case of no flow injection. For the small injection, the solution can be expanded into a series form in terms of the normalized injection velocity. The leading order terms are found to be equivalent to those in the earlier works in which the advection of turbulent kinetic energy has been neglected in the derivation. The new solution can provide more accurate prediction of bed shear stress for a wide range of flow injection rate, fluid type (e.g., from air to water), and surface roughness. On the other hand, the earlier theories may significantly underestimate bed shear stress under high injection rates.  相似文献   

15.
Results are presented to investigate the characteristics of turbulent flow in a pressure conduit, such as water supply pipes and flood discharging tunnels. The turbulent flow governing equations, the Reynolds-averaged Navier–Stokes equations, in conjunction with a k–ε turbulent model are numerically solved using SIMPLEC. The study focuses on the modeling and calculation of the flow velocity field, pressure distribution, and the incipient cavitation number of the surface irregularities in the conduit. Different types and sizes of irregularities are simulated for various incoming flow velocities. The computed results are in good agreement with laboratory experimental data.  相似文献   

16.
Mean Flow and Turbulence in Open-Channel Bend   总被引:1,自引:0,他引:1  
Flow over a developed bottom topography in a bend has been investigated experimentally. The measuring section is in the outer-bank half of the cross section at 60° into the bend. Spatial distributions of the mean velocities, turbulent stresses, and mean-flow and turbulent kinetic energy are presented. The cross-sectional motion contains two cells of circulation: besides the classical helical motion (center-region cell), a weaker counterrotating cell (outer-bank cell) is observed in the corner formed by the outer bank and the water surface. The downstream velocity in the outer half-section is higher than the one in straight uniform flow; the core of maximum velocities is found close to the separation between both circulation cells, well below the water surface. The turbulence structure in a bend is different from that in a straight flow, most notably in a reduction of the turbulent activity toward the outer bank. Both the outer-bank cell and reduced turbulent activity have a protective effect on the outer bank and the adjacent bottom and thus influence the stability of the flow perimeter and the bend morphology.  相似文献   

17.
针对唐钢210m2烧结烟气脱硫设备密相塔空塔内部的三维流场进行数值模拟,利用Fluent15 软件,采用k- ε模型和SIMPLE算法,模拟分析表明,烟气入口角度达16°时,密相塔内中部形成一个范围较大的湍流区域,烟气的湍流运动剧烈,烟气速度分布比较均匀,有利于提高脱硫效率。上部和下部区域形成范围较小的顺时针和逆时针湍流区域,湍流运动剧烈,增强了烟气和脱硫剂的充分混合,提高脱除效率。  相似文献   

18.
A computation fluid dynamics–population balance model (CFD–PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k-ε model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion–inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag–metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag–metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion–inclusion and inclusion-bubble turbulent random collisions become important for inclusion growth and removal. With the increase of the gas flow rate, the total removal ratio increases, but when the gas flow rate exceeds 200 NL/min in 150-ton ladle, the total removal ration almost does not change. For the larger size inclusions, the number density in bubbly plume zone is less than that in the sidewall recirculation zones, but for the small size inclusions, the distribution of number density shows the opposite trend.  相似文献   

19.
The influence of seepage (lateral flow) on the turbulence characteristics in free-surface flows over an immobile rough boundary is investigated. Steady flows having zero-pressure gradient over an immobile rough boundary created by uniform gravels of 4.1 mm in size were simulated experimentally with injection (upward seepage) and suction (downward seepage) applied through the boundary. A Vectrino (acoustic Doppler velocimeter) was used to measure the instantaneous velocities, which are analyzed to explore second- and third-order correlations, turbulent kinetic energy, turbulent energy budget, and conditional Reynolds shear stresses. It is observed that the second-order correlations decrease in presence of injection and increase in suction. The turbulent diffusivity and mixing length increase in presence of injection and decrease in suction. The third-order correlations suggest that the ejections are prevalent over the entire flow depth. The near-boundary flow is significantly influenced by the existence of upward seepage, which is manifested by a reduction in streamwise flux and the vertical advection of streamwise Reynolds normal stress. In addition, the upward flux and the streamwise advection of vertical Reynolds normal stress are also affected. The streamwise flux of turbulent kinetic is found to migrate upstream, while the vertical flux of turbulent kinetic energy is transported upward. The fluxes increase in presence of injection and decrease in suction. Energy budget evidences a lag between the turbulent dissipation and production and an opposing trend in the turbulent and pressure energy diffusions. A quadrant analysis for the conditional Reynolds shear stresses reveals that the ejection and sweep events are the primary contributions toward the total Reynolds shear stress production, with ejections dominating over the entire flow depth. The effect of seepage is shown to affect the magnitude of such events. However, in case of sweeps, this phenomenon is the opposite. The mean-time of occurrence of ejections and that of sweeps in suction are more persistent than those in no-seepage and injection.  相似文献   

20.
The unsteady turbulent flow during the continuous casting of steel is important, because it influences critical phenomena that affect steel quality. Unsteady three-dimensional flow in the mold region of the liquid pool during continuous casting of steel slabs has been computed using realistic geometries starting from the submerged inlet nozzle to the mold. The cassette filter function was used to deal with unsteady Navier-Stokes equation, and then the turbulent flow in the thin slab CCM was simulated with the large eddy simulation method combined with the Smagorinsky sub-grid scale model in this paper. And the model was verified by the Particle Image Velocimetry (PIV) experimental results which was got from a relate scientific literature. In this thesis, by means of LES, the flow characteristics in the thin slab CCM were acquired, such as the vortex distribution, the formation of the large eddy coherent structures, development, shedding and fracture process. In the same time, the turbulent asymmetric distribution was revealed even the nozzle in the centre position. Interactions between the two halves cause large velocity fluctuations near the meniscus. And the vortex is located at the low velocity side adjacent to the SEN. Along with the unsteady time development, the unsteady turbulent large vortex structures of the liquid steel in the CCM presented periodic bias flow distribution, and the period is about 20 seconds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号