首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
不含抑制剂的碱性抛光液对铜布线平坦化的研究   总被引:6,自引:6,他引:0  
本文提出一种碱性铜布线抛光液,其不含通用的腐蚀抑制剂,并对其化学机械抛光和平坦化 (CMP)性能进行了研究。首先研究了此抛光液对铜的静态腐蚀速率和抛光速率,并与含抑制 剂的铜抛光液做了对比实验。在静态条件下,此不含抑制剂的碱性铜抛光液对铜基本无腐蚀速率,而在动态抛光过程中对铜有较高的速率。而含抑制剂的抛光液对静态腐蚀速率略有降低,但是却大幅度降低了铜的去除速率。另外,对铜布线的化学机械平坦化研究表明,此不含抑制剂的碱性铜抛光液能够有效的去除铜布线表面的高低差,有较高的平坦化能力。此抛光液能够应用于铜CMP的第一步抛光,能够去除大量多余铜时初步实现平坦化。  相似文献   

2.
以高浓度纳米SiO2水溶胶为磨料,H2O2为氧化剂的碱性抛光液,研究了适用于终抛铜/钽的CMP抛光液.通过调节pH值,降低抛光液的氧化,增强有机碱的作用,来降低铜的去除速率并提高钽的去除速率,得到了很好的铜/钽抛光选择性.  相似文献   

3.
邢哲  刘玉岭  檀柏梅  王新  李薇薇 《半导体学报》2004,25(12):1726-1729
以高浓度纳米SiO2水溶胶为磨料,H2O2为氧化剂的碱性抛光液,研究了适用于终抛铜/钽的CMP抛光液.通过调节pH值,降低抛光液的氧化,增强有机碱的作用,来降低铜的去除速率并提高钽的去除速率,得到了很好的铜/钽抛光选择性.  相似文献   

4.
GLSI多层铜互连线的平坦化中,抛光液中的SiO2磨料对铜的平坦化效率具有重要的作用。研究了碱性纳米SiO2质量分数对300 mm铜去除速率和300 mm铜布线平坦化作用的影响。结果表明,随着磨料质量分数的增大,铜的去除速率增大,晶圆的均匀性变好,但磨料质量分数过高时,铜的去除速率略有降低,可能由于纳米SiO2表面硅羟基吸附在金属铜表面,导致质量传递作用变弱,引起速率降低。通过对图形片平坦化实验研究表明,随着磨料质量分数的增大,平坦化能力增强,这是因为磨料的质量分数增大使得高低速率差增大,能够有效消除高低差,实现平坦化。  相似文献   

5.
采用自制的不含常用的腐蚀抑制剂(BTA)碱性铜精抛液对铜和钽进行了化学机械抛光。研究了高稀释倍数(50倍)的精抛液对铜膜的静态腐蚀速率和抛光速率以及钽抛光速率的影响,并对65 nm技术节点的300 mm单层铜布线片进行了平坦化研究。结果表明,铜膜的静态腐蚀速率为1.5 nm/min,动态抛光速率为206.9 nm/min,阻挡层Ta/TaN抛光速率仅为0.4 nm/min,Cu/Ta选择比高。此精抛液能够有效去除残余铜,进一步过抛完全去除残余铜时,对阻挡层的去除速率趋于0,而沟槽里的铜布线去除量低,碟形坑和蚀坑大小满足实际平坦化要求。此精抛液可满足65 nm技术节点平坦化的要求。  相似文献   

6.
段波  安卫静  周建伟  王帅 《半导体学报》2015,36(7):076002-5
Ru作为一种新型阻挡层材料已经应用到了先进的集成电路生产中。但由于金属钌特殊的物理化学性质使其化学机械抛光(CMP)还存在很多问题。为了提高Ru的去除速率,本文研究了FA/O螯合剂和H2O2对Ru的抛光去除速率(RR)和静态腐蚀速率(SER)的影响。实验结果表明,随着H2O2浓度的增加,在抛光过程中,Ru表面形成了致密氧化层,导致Ru的抛光去除速率(RR)和静态腐蚀速率(SER)先增加后减少。通过电化学方法对Ru表面的腐蚀情况进行了分析研究。结果表明,FA/O螯合剂能通过与Ru的氧化物((RuO4)2- 和RuO4 )形成可溶性胺盐([R(NH3)4] (RuO4)2) 提高Ru 的去除速率。同时,为了降低金属Ru CMP后表面粗糙度,在抛光液中加入了非离子表面活性剂AD。  相似文献   

7.
针对不合腐蚀抑制剂苯并三氮唑(BTA)的碱性铜粗抛液,通过对3英寸(1英寸=2.54 cm)铜片上的动态抛光速率和静态腐蚀速率的研究来模拟评估氧化剂对晶圆表面平坦化的影响.在12英寸铜镀膜片和TM1图形片上分别研究氧化剂体积分数对表面平坦化的影响.实验结果表明:动态抛光速率和静态腐蚀速率均随着氧化剂体积分数的增加先逐渐增大,达到最大值,然后下降,趋于平缓.片内非均匀性和剩余高低差均随H2O2体积分数的增加,先呈下降趋势,后缓慢上升.当氧化剂体积分数为3%时,动态去除速率(vRR)为398.988 nm/min,静态腐蚀速率vER为6.834 nm/min,vRR/vER比值最大,片内非均匀性最小为3.82%,台阶高低差最小为104.6 nm/min,此时晶圆片有较好的平坦化效果.  相似文献   

8.
通过低磨料浓度下催化反应对铜膜抛光速率的影响,证实了纳米SiO2胶体作为催化反应物可以极大地提高铜膜表面的化学反应速率。通过浸泡在不同磨料浓度抛光液中的铜电极表面腐蚀电位和腐蚀电流数值,进一步证实了催化反应能够加速凹处钝化膜的生成,并确定了在静态腐蚀条件下催化反应速率转换临界点所对应的纳米SiO2溶胶浓度为0.1vol%和1vol%。根据催化反应对铜晶圆各平坦化参数的影响,确定了低磨料CMP的最佳纳米SiO2溶胶浓度为0.3vol%,此时铜晶圆的抛光速率、台阶消除量、平坦化效率、碟形坑高度和腐蚀坑高度分别为535nm/min、299nm、56%、103nm和19nm。  相似文献   

9.
ULSI多层互连中W-CMP速率研究   总被引:1,自引:0,他引:1  
随着IC制造技术进入到亚深微米时代,化学机械抛光(CMP)工艺成为ULSI多层布线的关键技术之一。分析了W-CMP的机理,抛光液对W材料表面具有化学腐蚀和机械研磨的双重作用,对抛光速率有着重要的影响。在分析了抛光液中各组分的作用基础上,重点研究了专用的氧化剂、磨料、pH值调节剂和抛光液流量对CMP速率的影响,优化配制了高速率、高平整的碱性W抛光液。实验证明,抛光液流量为150mL/min,V(硅溶胶):V(水)=1:1,有机碱为5mL/L,活性剂为5mL/L,H2O2质量浓度为20mL/L时,能够获得较高的抛光速率,并实现了全局平坦化。最后对W-CMP中存在的问题和发展趋势进行了分析和展望。  相似文献   

10.
化学机械平坦化(CMP)是铜互连制备过程中唯一的全局平坦化技术。但是由于互连线铜与扩散阻挡层物理及化学性质上的差异,在阻挡层的化学机械平坦化过程中将加剧导致碟形坑的产生。目前,国际上抛光液以酸性为主,但是其存在固有的问题,如酸性气体挥发,腐蚀严重等。本论文研发出一种新型碱性阻挡层抛光液,与商用的阻挡层抛光液做对比,评估了其抛光性能。实验结果表明,新型碱性阻挡层抛光液抛光后表面状态好,粗糙度较低。另外,碟形坑及电阻测试结果表明,新型碱性阻挡层抛光后铜布线的表面形貌好,碟形坑小,能够应用于铜布线阻挡层的CMP中。  相似文献   

11.
化学机械抛光制程中铜抛光液平坦化能力的评估   总被引:3,自引:3,他引:0  
The evaluation methods of planarization capability of copper slurry are investigated.Planarization capability and material removal rate are the most essential properties of slurry.The goal of chemical mechanical polishing(CMP) is to achieve a flat and smooth surface.Planarization capability is the elimination capability of the step height on the copper pattern wafer surface,and reflects the passivation capability of the slurry to a certain extent.Through analyzing the planarization mechanism of the CMP process and experimental results,the planarization capability of the slurry can be evaluated by the following five aspects:pressure sensitivity,temperature sensitivity,static etch rate,planarization efficiency and saturation properties.  相似文献   

12.
We propose the action mechanism of Cu chemical mechanical planarization(CMP) in an alkaline solution.Meanwhile,the effect of abrasive mass fraction on the copper removal rate and within wafer non-uniformity(WIWNU) have been researched.In addition,we have also investigated the synergistic effect between the applied pressure and the FA/O chelating agent on the copper removal rate and WIWNU in the CMP process.Based on the experimental results,we chose several concentrations of the FA/O chelating agent,which added in the slurry can obtain a relatively high removal rate and a low WIWNU after polishing,to investigate the planarization performance of the copper slurry under different applied pressure conditions.The results demonstrate that the copper removal rate can reach 6125 °/min when the abrasive concentration is 3 wt.%.From the planarization experimental results,we can see that the residual step height is 562 ° after excessive copper of the wafer surface is eliminated.It denotes that a good polishing result is acquired when the FA/O chelating agent concentration and applied pressure are fixed at 3 vol% and 1 psi,respectively.All the results set forth here are very valuable for the research and development of alkaline slurry.  相似文献   

13.
A novel alkaline copper slurry that possesses a relatively high planarization performance is investigated under a low abrasive concentration.Based on the action mechanism of CMP,the feasibility of using one type of slurry in copper bulk elimination process and residual copper elimination process,with different process parameters,was analyzed.In addition,we investigated the regular change of abrasive concentration effect on copper and tantalum removal rate and within wafer non-uniformity(WIWNU) in CMP process.When the abrasive concentration is 3 wt%,in bulk elimination process,the copper removal rate achieves 6125 °/min,while WIWNU is 3.5%,simultaneously.In residual copper elimination process,the copper removal rate is approximately 2700°/min,while WIWNU is 2.8%.Nevertheless,the tantalum removal rate is 0 °/min,which indicates that barrier layer isn’t eliminated in residual copper elimination process.The planarization experimental results show that an excellent planarization performance is obtained with a relatively high copper removal rate in bulk elimination process.Meanwhile,after residual copper elimination process,the dishing value increased inconspicuously,in a controllable range,and the wafer surface roughness is only 0.326 nm(sq < 1 nm) after polishing.By comparison,the planarization performance and surface quality of alkaline slurry show almost no major differences with two kinds of commercial acid slurries after polishing.All experimental results are conducive to research and improvement of alkaline slurry in the future.  相似文献   

14.
Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI,meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency,low surface roughness.The effect of slurry components such as abrasive (colloidal silica),complexing agent (glycine),inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper.First,the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward.Then 1 wt% colloidal silica,2.5 wt% glycine,200 ppm BTA,20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry,and using such slurry the copper blanket wafer was polished.From the variations of copper removal rate,root-mean square roughness (Sq) value with the setting time,it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days,which satisfies the requirement of microelectronics further development.  相似文献   

15.
基于化学机械动力学的碱性铜抛光液平坦化机理研究   总被引:1,自引:1,他引:0  
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.  相似文献   

16.
Alkaline barrier slurry applied in TSV chemical mechanical planarization   总被引:2,自引:2,他引:0  
We have proposed a TSV (through-silicon-via) alkaline barrier slurry without any inhibitors for barrier CMP (chemical mechanical planarization) and investigated its CMP performance. The characteristics of removal rate and selectivity of Ti/SiO2/Cu were investigated under the same process conditions. The results obtained from 6.2 mm copper, titanium and silica show that copper has a low removal rate during barrier CMP by using this slurry, and Ti and SiO2 have high removal rate selectivity to Cu. Thus it may be helpful to modify the dishing. The TSV wafer results reveal that the alkaline barrier slurry has an obvious effect on surface topography correction, and can be applied in TSV barrier CME  相似文献   

17.
Many researchers studying copper chemical mechanical planarization (CMP) have been focused on mechanisms of copper removal using various chemicals. On the basis of these previous works, we studied the effect of slurry components on uniformity. Chemical mechanical planarization of copper was performed using citric acid (C6H8O7), hydrogen peroxide (H2O2), colloidal silica, and benzotriazole (BTA, C6H4N3H) as a complexing agent, an oxidizer, an abrasive, and a corrosion inhibitor, respectively. As citric acid was added to copper CMP slurry (pH 4) containing 3 vol% hydrogen peroxide and 3 wt% colloidal silica, the material removal (MRR) at the wafer center was higher than its edge. Hydrogen peroxide could not induce a remarkable change in the profile of MRR. Colloidal silica, used as an abrasive in copper CMP slurry containing 0.01 M of citric acid and 3 vol% of hydrogen peroxide, controlled the profile of MRR by abrading the wafer edge. BTA as a corrosion inhibitor decreased the MRR and seems to control the material removal around the wafer center. All the results of in this study showed that the MRR profile of copper CMP could be controlled by the contents of slurry components.  相似文献   

18.
There is a lot ofhydroxyl on the surface ofnano SiO2 sol used as an abrasive in the chemical mechanical planarization (CMP) process, and the chemical reaction activity of the hydroxyl is very strong due to the nano effect. In addition to providing a mechanical polishing effect, SiO2 sol is also directly involved in the chemical reaction. The stability of SiO2 sol was characterized through particle size distribution, zeta potential, viscosity, surface charge and other parameters in order to ensure that the chemical reaction rate in the CMP process, and the surface state of the copper film after CMP was not affected by the SiO2 sol. Polarization curves and corrosion potential of different concentrations of SiO2 sol showed that trace SiO2 sol can effectively weaken the passivation film thickness. In other words, SiO2 sol accelerated the decomposition rate of passive film. It was confirmed that the SiO2 sol as reactant had been involved in the CMP process of copper film as reactant by the effect of trace SiO2 sol on the removal rate of copper film in the CMP process under different conditions. In the CMP process, a small amount of SiO2 sol can drastically alter the chemical reaction rate of the copper film, therefore, the possibility that Cu/SiO2 as a catalytic system catalytically accelerated the chemical reaction in the CMP process was proposed. According to the van't Hoff isotherm formula and the characteristics of a catalyst which only changes the chemical reaction rate without changing the total reaction standard Gibbs free energy, factors affecting the Cu/SiO2 catalytic reaction were derived from the decomposition rate of Cu (OH)2 and the pH value of the system, and then it was concluded that the CuSiO3 as intermediates of Cu/SiO2 catalytic reaction accelerated the chemical reaction rate in the CMP process. It was confirmed that the Cu/SiO2 catalytic system generated the intermediate of the catalytic reaction (CuSiO3) in the CMP process through the removal rate of copper film, infrared spectrum and AFM diagrams in different pH conditions. FinalLy it is concluded that the SiO2 sol used in the experiment possesses stable performance; in the CMP process it is directly involved in the chemical reaction by creating the intermediate of the catalytic reaction (CuSiO3) whose yield is proportional to the pH value, which accelerates the removal of copper film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号