首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Increase in incident light and surface modification of the charge transport layer are powerful routes to achieve high-performance efficiency of perovskite solar cells (PSCs) by improving the short-circuit current density (JSC) and charge transport characteristics, respectively. However, few techniques are studied to reduce reflection loss and simultaneously improve the electrical performance of the electron transport layer (ETL). Herein, an inclined fluorine (F) sputtering process to fabricate high-performance PSCs is proposed. The proposed process simultaneously implements the antireflection effect of F coating and the effect of F doping on a TiO2 ETL, which increases the amount of light transmitted into the PSC due to the extremely low refractive index (≈1.39) and drastically improves the electrical properties of TiO2. Consequently, the JSC of the F coating and doping perovskite solar cell (F-PSC) increased from 25.05 to 26.01 mA cm−2, and the power conversion efficiency increased from 24.17% to 25.30%. The unencapsulated F-PSC exhibits enhanced air stability after 900 h of exposure to ambient environment atmosphere (30% relative humidity, 25 °C under dark condition). The inclined F sputtering process in this study can become a universal method for PSCs from the development stage to commercialization in the future.  相似文献   

2.
Flexible perovskite solar cells (f-PSCs) show great promise in portable-power applications (e.g., chargers, drones) and low-cost, scalable productions (e.g., roll-to-roll). However, in conventional n–i–p architecture f-PSCs, the low-temperature processed metal oxide electron transport layers (ETLs) usually suffer from high resistance and severe defects that limit the power conversion efficiency (PCE) improvement of f-PSCs. Besides the enhancement in the mobility of metal oxide and passivation for perovskite/ETL interfacial defects reported in previous literature, herein, the electron transport loss between the metal oxide nanocrystallines within the ETL is studied by introducing an amorphous F-doped TiOx (F-TiOx) caulked crystalline SnO2 composite ETL. The F-TiOx in this novel composite ETL acts as an interstitial medium between adjacent SnO2 nanocrystallines, which can provide more electron transport channels, effectively passivate oxygen vacancies, and optimize the energy level arrangement, thus significantly enhancing the electron mobility of ETL and reducing the charge transport losses. The composite ETL-based f-PSCs achieve a high PCE of 22.70% and good operational stability. Furthermore, a moderate roughness of the composite ETL endows f-PSCs with superior mechanical reliability by virtue of a strong coupling at the ETL/perovskite interface, by which the f-PSCs can maintain 82.11% of their initial PCE after 4000 bending cycles.  相似文献   

3.
In the past decade, the perovskite solar cell (PSC) has attracted tremendous attention thanks to the substantial efforts in improving the power conversion efficiency from 3.8% to 25.5% for single-junction devices and even perovskite-silicon tandems have reached 29.15%. This is a result of improvement in composition, solvent, interface, and dimensionality engineering. Furthermore, the long-term stability of PSCs has also been significantly improved. Such rapid developments have made PSCs a competitive candidate for next-generation photovoltaics. The electron transport layer (ETL) is one of the most important functional layers in PSCs, due to its crucial role in contributing to the overall performance of devices. This review provides an up-to-date summary of the developments in inorganic electron transport materials (ETMs) for PSCs. The three most prevalent inorganic ETMs (TiO2, SnO2, and ZnO) are examined with a focus on the effects of synthesis and preparation methods, as well as an introduction to their application in tandem devices. The emerging trends in inorganic ETMs used for PSC research are also reviewed. Finally, strategies to optimize the performance of ETL in PSCs, effects the ETL has on J–V hysteresis phenomenon and long-term stability with an outlook on current challenges and further development are discussed.  相似文献   

4.
Improving the ohmic contact and interfacial morphology between an electron transport layer (ETL) and perovskite film is the key to boost the efficiency of planar perovskite solar cells (PSCs). In the current work, an amorphous–crystalline heterophase tin oxide bilayer (Bi‐SnO2) ETL is prepared via a low‐temperature solution process. Compared with the amorphous SnO2 sol–gel film (SG‐SnO2) or the crystalline SnO2 nanoparticle (NP‐SnO2) counterparts, the heterophase Bi‐SnO2 ETL exhibits improved surface morphology, considerably fewer oxygen defects, and better energy band alignment with the perovskite without sacrificing the optical transmittance. The best PSC device (active area ≈ 0.09 cm2) based on a Bi‐SnO2 ETL is hysteresis‐less and achieves an outstanding power conversion efficiency of ≈20.39%, which is one of the highest efficiencies reported for SnO2‐triple cation perovskite system based on green antisolvent. More fascinatingly, large‐area PSCs (active areas of ≈3.55 cm2) based on the Bi‐SnO2 ETL also achieves an extraordinarily high efficiency of ≈14.93% with negligible hysteresis. The improved device performance of the Bi‐SnO2‐based PSC arises predominantly from the improved ohmic contact and suppressed bimolecular recombination at the ETL/perovskite interface. The tailored morphology and energy band structure of the Bi‐SnO2 has enabled the scalable fabrication of highly efficient, hysteresis‐less PSCs.  相似文献   

5.
SnO2 as an electron transport layer (ETL) has been widely used in regular planar perovskite solar cells (PSCs) owing to its high optical transmittance, less photocatalytic activity, and low-temperature processing. However, SnO2-based PSCs still face many challenges which greatly impair their efficiency and stability of PSCs. Herein, a novel and effective multifunctional modification strategy is proposed by incorporating streptomycin sulfate (STRS) molecules with multiple functional groups into SnO2 ETL. STRS can significantly suppress SnO2 nanoparticle agglomeration, improve the electronic property of SnO2, as well as reduce nonradiative recombination. At the same time, interfacial residual tensile stress is released and the interfacial energy level alignment becomes more matched. As a result, the STRS-modified PSCs achieve a higher efficiency of 22.89% compared to 20.61% of the control device and exhibit a hysteresis-free feature. The humidity and thermal stability of PSCs based on STRS-SnO2 are significantly improved. Furthermore, the efficiency of flexible devices increased from 19.74% to 20.79%, and the devices still maintain >80% of initial PCE after 4500 bending cycles with a bend radius of 5 mm. This study provides a low-cost, facile, and efficient strategy for achieving high efficiency and stability in PSCs.  相似文献   

6.
Perovskite solar cells (PSCs) have advanced rapidly with power conversion efficiencies (PCEs) now exceeding 22%. Due to the long diffusion lengths of charge carriers in the photoactive layer, a PSC device architecture comprising an electron‐ transporting layer (ETL) is essential to optimize charge flow and collection for maximum performance. Here, a novel approach is reported to low temperature, solution‐processed ZnO ETLs for PSCs using combustion synthesis. Due to the intrinsic passivation effects, high crystallinity, matched energy levels, ideal surface topography, and good chemical compatibility with the perovskite layer, this combustion‐derived ZnO enables PCEs approaching 17–20% for three types of perovskite materials systems with no need for ETL doping or surface functionalization.  相似文献   

7.
Tri‐cation and dual‐anion mixed perovskites have been widely utilized in perovskite solar cell (PSC) applications due to their novel properties such as high absorption, high stability, and low cost. To commercialize the PSCs, further improving the device performance without detrimentally changing the device configuration is important at present. Herein, Au@SiO2 nanoparticles (NPs) are introduced to modify the interface between mesoporous TiO2 (mp‐TiO2) and mixed perovskite with increased main photovoltaic parameters of the device, resulting in a ≈29% enhancement of power conversion efficiency (PCE) from 15.8% to 20.3%. The origins of the enhancement have been studied by exploring the optical absorption, optical power distribution, and charge carrier behaviors within the system. The small perturbation transient photovoltage measurement exhibits prolonged charge carrier lifetimes after the Au@SiO2 NPs incorporation, and time of flight photoconductivity measurement shows that charge carrier mobilities of this system are also enhanced. These characteristics make metallic nanostructures a promising functional material in facile tuning of the charge carriers transport and further boosting the PCE of the PSCs.  相似文献   

8.
Regulating the electron transport layer (ETL) has been an effective way to promote the power conversion efficiency (PCE) of perovskite solar cells (PSCs) as well as suppress their hysteresis. Herein, the SnO2 ETL using a cost-effective modification material rubidium fluoride (RbF) is modified in two methods: 1) adding RbF into SnO2 colloidal dispersion, F and Sn have a strong interaction, confirmed via X-ray photoelectron spectra and density functional theory results, contributing to the improved electron mobility of SnO2; 2) depositing RbF at the SnO2/perovskite interface, Rb+ cations actively escape into the interstitial sites of the perovskite lattice to inhibit ions migration and reduce non-radiative recombination, which dedicates to the improved open-circuit voltage (Voc) for the PSCs with suppressed hysteresis. In addition, double-sided passivated PSCs, RbF on the SnO2 surface, and p-methoxyphenethylammonium iodide on the perovskite surface, produces an outstanding PCE of 23.38% with a Voc of 1.213 V, corresponding to an extremely small Voc deficit of 0.347 V.  相似文献   

9.
MXenes are a large and rapidly expanding family of 2D materials that, owing to their unique optoelectronic properties and tunable surface termination, find a wide range of applications including energy storage and energy conversion. In this work, Ti3C2Tx MXene nanosheets are applied as a novel type of electron transport layer (ETL) in low‐temperature processed planar‐structured perovskite solar cells (PSCs). Interestingly, simple UV‐ozone treatment of the metallic Ti3C2Tx that increases the surface Ti? O bonds without any change in its bulk properties such as high electron mobility improves its suitability as an ETL. Improved electron transfer and suppressed recombination at the ETL/perovskite interface results in augmentation of the power conversion efficiency (PCE) from 5.00% in the case of Ti3C2Tx without UV‐ozone treatment to the champion PCE of 17.17%, achieved using the Ti3C2Tx film after 30 min of UV‐ozone treatment. As the first report on the use of pure MXene layer as an ETL in PSCs, this work shows the great potential of MXenes to be used in PSCs and displays their promise for applications in photovoltaic technology in general.  相似文献   

10.
Great attention to cost‐effective high‐efficiency solar power conversion of trihalide perovskite solar cells (PSCs) has been hovering at high levels in the recent 5 years. Among PSC devices, admittedly, TiO2 is the most widely used electron transport layer (ETL); however, its low mobility which is even less than that of CH3NH3PbI3 makes it not an ideal material. In principle, SnO2 with higher electron mobility can be regarded as a positive alternative. Herein, a SnO2 nanocolloid sol with ≈3 nm in size synthesized at 60 °C was spin‐coated onto the fuorine‐doped tin oxide (FTO) glass as the ETL of planar CH3NH3PbI3 perovskite solar cells. TiCl4 treatment of SnO2‐coated FTO is found to improve crystallization and increase the surface coverage of perovskites, which plays a pivotal role in improving the power conversion efficiency (PCE). In this report, a champion efficiency of 14.69% (Jsc = 21.19 mA cm?2, Voc = 1023 mV, and FF = 0.678) is obtained with a metal mask at one sun illumination (AM 1.5G, 100 mW cm?2). Compared to the typical TiO2, the SnO2 ETL efficiently facilitates the separation and transportation of photogenerated electrons/holes from the perovskite absorber, which results in a significant enhancement of photocurrent and PCE.  相似文献   

11.
Organic-inorganic hybrid perovskite solar cell (PSC) is a third-generation photovoltaic technology[1,2],and the certi-fied power conversion efficiency (PCE) has reached 25.5%(https://www.nrel.gov/pv/cell-efficiency.html),which can rival solar cells based on crystalline-Si and other inorganic semi-conductors.The intrinsic instability of perovskite materials could impede PSC commercialization[3].To date,a variety of strategies such as composition engineering,additive engi-neering,interface engineering and encapsulation technique are employed to improve the long-term stability of PSCs[4-9].In particular,fullerene materials with high electron mobility,high electron affinity,small reorganization energy and ad-justable energy level have been widely utilized as interfacial layers or additives in PSCs for efficiency and stability improve-ment[10].Among them,fluorinated and crosslinkable fullerene derivatives can improve the stability of PSCs effectively.The fluorinated fullerene derivatives could improve the mois-ture stability because of the hydrophobicity of fluorine atom.The crosslinked fullerene derivatives can protect the electron-transport layers (ETLs) against solvent erosion during per-ovskite solution deposition,and the as-formed organic net-works can improve mechanical stability of PSCs.  相似文献   

12.
Stability is the main challenge in the field of organic–inorganic perovskite solar cells (PSCs). Finding low‐cost and stable hole transporting layer (HTL) is an effective strategy to address this issue. Here, a new donor polymer, poly(5,5‐didecyl‐5H‐1,8‐dithia‐as‐indacenone‐alt‐thieno[3,2‐b]thiophene) (PDTITT), is synthesized and employed as an HTL in PSCs, which has a suitable band alignment with respect to the double‐A cation perovskite film. Using PDTITT, the hole extraction in PSCs is greatly improved as compared to commonly used HTLs such as 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐OMeTAD), addressing the hysteresis issue. After careful optimization, an efficient PSC is achieved based on mesoscopic TiO2 electron transporting layer with a maximum power conversion efficiency (PCE) of 18.42% based on PDTITT HTL, which is comparable with spiro‐OMeTAD‐based PSC (19.21%). Since spiro‐based PSCs suffer from stability issue, the operational stability in the PSC with PDTITT HTL is studied. It is found that the device with PDTITT retains 88% of its initial PCE value after 200 h under illumination, which is better than the spiro‐based PSC (54%).  相似文献   

13.
The short lifetime and low stability of polymer solar cells (PSCs) devices limit their feasibility for commercial use. Modification of the interfacial electron-transport layers (ETL) has been demonstrated as an effective way to enhance power conversion efficiency (PCE) and device stability. In this work, two types of monolayers consisting of amphiphilic molecules (sodium stearate or sodium oleate - a major constituent of “soap”) are introduced as novel ETLs in polymer: PCBM based PSCs. Significant improvement of PCE was demonstrated and an extended operational lifetime by 5–25 times was achieved. We attributed the improved performance to the interface modification by the amphiphilic molecular layers. The amphiphilic interfacial layers established a better contact between the active layer and the cathode by reducing the roughness and forming a compact dipole at the interface, which facilitates charge generation, charge transport to, and charge collection at the electrodes, thereby enhancing the device efficiency and stability. This versatile interface modification approach has shown to be an immediate and promising means to improve the performance of PSCs.  相似文献   

14.
The improvement of power conversion efficiency (PCE) and stability of the perovskite solar cell (PSC) is hindered by carrier recombination originating from the defects at the buried interface of the PSC. It is crucial to suppress the nonradiative recombination and facilitate carrier transfer in PSC via interface engineering. Herein, P-biguanylbenzoic acid hydrochloride (PBGH) is developed to modify the tin oxide (SnO2)/perovskite interface. The effects of PBGH on carrier transportation, perovskite growth, defect passivation, and PSC performance are systematically investigated. On the one hand, the PBGH can effectively passivate the trap states of Sn dangling bonds and O vacancies on the SnO2 surface via Lewis acid/base coordination, which is conducive to improving the conductivity of SnO2 film and accelerating the electron extraction. On the other hand, PBGH modification assists the formation of high-quality perovskite film with low defect density due to its strong interaction with PbI2. Consequently, the PBGH-modified PSC exhibits a champion power conversion efficiency (PCE) of 24.79%, which is one of the highest PCEs among all the FACsPbI3-based PSCs reported to date. In addition, the stabilities of perovskite films and devices under high temperature/humidity and light illumination conditions are also systematically studied.  相似文献   

15.
Perovskite solar cells (PSCs) are highly promising next‐generation photovoltaic devices because of the cheap raw materials, ideal band gap of ≈1.5 eV, broad absorption range, and high absorption coefficient. Although lead‐based inorganic‐organic PSC has achieved the highest power conversion efficiency (PCE) of 25.2%, the toxic nature of lead and poor stability strongly limits the commercialization. Lead‐free inorganic PSCs are potential alternatives to toxic and unstable organic‐inorganic PSCs. Particularly, double‐perovskite Cs2AgBiBr6‐based PSC has received interests for its all inorganic and lead‐free features. However, the PCE is limited by the inherent and extrinsic defects of Cs2AgBiBr6 films. Herein, an effective and facile strategy is reported for improving the PCE and stability by introducing an N719 dye interlayer, which plays multifunctional roles such as broadening the absorption spectrum, suppressing the charge carrier recombination, accelerating the hole extraction, and constructing an appropriate energy level alignment. Consequently, the optimizing cell delivers an outstanding PCE of 2.84%, much improved as compared with other Cs2AgBiBr6‐based PSCs reported so far in the literature. Moreover, the N719 interlayer greatly enhances the stability of PSCs under ambient conditions. This work highlights a useful strategy to boost the PCE and stability of lead‐free Cs2AgBiBr6‐based PSCs simultaneously, accelerating the commercialization of PSC technology.  相似文献   

16.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   

17.
Organic–inorganic hybrid perovskites have reached an unprecedented high efficiency in photovoltaic applications, which makes the commercialization of perovskite solar cells (PSCs) possible. In the past several years, particular attention has been paid to the stability of PSC devices, which is a critical issue for becoming a practical photovoltaic technology. In particular, the interface-induced degradation of perovskites should be the dominant factor causing poor stability. Here, imidazole bromide functionalized graphene quantum dots (I-GQDs) are demonstrated to regulate the interface between the electron transport layer (ETL) and formamidinium lead iodide (FAPbI3) perovskite layer. The incorporation of I-GQDs not only reduces the interface defects for achieving a better energy level alignment between ETL and perovskite, but also improves the film quality of FAPbI3 perovskite including enlarged grain size, lower trap density, and a longer carrier lifetime. Consequently, the planar FAPbI3 PSCs with I-GQDs regulation achieve a high efficiency of 22.37% with enhanced long-term stability.  相似文献   

18.
3D organic–inorganic lead halide perovskites have shown great potential in efficient photovoltaic devices. However, the low stability of the 3D perovskite layer and random arrangement of the perovskite crystals hinder its commercialization road. Herein, a highly oriented 2D@3D ((AVA)2PbI4@MAPbI3) perovskite structure combining the advantages of both 2D and 3D perovskite is fabricated through an in situ route. The highest power conversion efficiency (PCE) of 18.0% is observed from a 2D@3D perovskite solar cell (PSC), and it also shows significantly enhanced device stability under both inert (90% of initial PCE for 32 d) and ambient conditions (72% of initial PCE for 20 d) without encapsulation. The high efficiency of 18.0% and nearly twofold improvement of device stability in ambient compared with pure 3D PSCs confirm that such 2D@3D perovskite structure is an effective strategy for high performance and increasing stability and thus will enable the timely commercialization of PSCs.  相似文献   

19.
Defects passivation in electron transport layer (ETL) is a key issue to optimize the performance of polymer solar cells (PSCs). In this work, a novel strategy is developed to form defects passivated ZnO ETL by introducing 4-tert-butylpyridine (TBP) agent into precursor. While the power conversion efficiency (PCE) of the inverted PSCs based poly{4,8-bis [(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno [3,4-b]thiophene-4,6-diyl}:[6,6]-phenyl C71-butyric acid methyl ester (PTB7:PC71BM) with the pure ZnO ETL is 8.02%, that of the device with modified ZnO ETL is dramatically improved to 10.26%, with TBP accounting for ~28% efficiency improvement. Our study demonstrates that the precursor agent significantly affect the surface morphology and size of ZnO in ETL. Furthermore, it proves that the ZnO ETL with TBP (T-ZnO) is beneficial to polish interfacial contact between ETL and active layer and depress exciton quenching loss, resulting in enhanced exciton dissociation, efficient carrier collection and reduced charge recombination, thus improving the device performance. To verify the universality of T-ZnO ETL, the champion photovoltaic performance with a PCE of 11.74% (10% improvement) is obtained in the PBDB-T-2F:IT-4F based nonfullerene PSCs using T-ZnO as ETL. Our work developed a new, universal and facile strategy for designing highly efficient PSCs based on fullerene and nonfullerene blend systems.  相似文献   

20.
Organic–inorganic metal halide perovskite solar cells (PSCs) have attracted much research interest owing to their high power conversion efficiency (PCE), solution processability, and the great potential for commercialization. However, the device performance is closely related to the quality of the perovskite film and the interface properties, which cannot be easily controlled by solution processes. Here, 2D WS2 flakes with defect‐free surfaces are introduced as a template for van der Waals epitaxial growth of mixed perovskite films by solution process for the first time. The mixed perovskite films demonstrate a preferable growth along (001) direction on WS2 surfaces. In addition, the WS2/perovskite heterojunction forms a cascade energy alignment for efficient charge extraction and reduced interfacial recombination. The inverted PSCs with WS2 interlayers show high PCEs up to 21.1%, which is among the highest efficiency of inverted planar PSCs. This work demonstrates that high‐mobility 2D materials can find important applications in PSCs as well as other perovskite‐based optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号