首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The family of lapped orthogonal transforms is extended to include basis functions of arbitrary length. Within this new family, the extended lapped transform (ELT) is introduced, as a generalization of the previously reported modulated lapped transform (MLT). Design techniques and fast algorithms for the ELT are presented, as well as examples that demonstrate the good performance of the ELT in signal coding applications. Therefore, the ELT is a promising substitute for traditional block transforms in transform coding systems, and also a good substitute for less efficient filter banks in subband coding systems  相似文献   

2.
Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.  相似文献   

3.
A lattice structure for an M-channel linear-phase perfect reconstruction filter bank (LPPRFB) based on the singular value decomposition (SVD) is introduced. The lattice can be proven to use a minimal number of delay elements and to completely span a large class of LPPRFBs: all analysis and synthesis filters have the same FIR length, sharing the same center of symmetry. The lattice also structurally enforces both linear-phase and perfect reconstruction properties, is capable of providing fast and efficient implementation, and avoids the costly matrix inversion problem in the optimization process. From a block transform perspective, the new lattice can be viewed as representing a family of generalized lapped biorthogonal transform (GLBT) with an arbitrary number of channels M and arbitrarily large overlap. The relaxation of the orthogonal constraint allows the GLBT to have significantly different analysis and synthesis basis functions, which can then be tailored appropriately to fit a particular application. Several design examples are presented along with a high-performance GLBT-based progressive image coder to demonstrate the potential of the new transforms  相似文献   

4.
In this paper, we present the design of directional lapped transforms for image coding. A lapped transform, which can be implemented by a prefilter followed by a discrete cosine transform (DCT), can be factorized into elementary operators. The corresponding directional lapped transform is generated by applying each elementary operator along a given direction. The proposed directional lapped transforms are not only nonredundant and perfectly reconstructed, but they can also provide a basis along an arbitrary direction. These properties, along with the advantages of lapped transforms, make the proposed transforms appealing for image coding. A block-based directional transform scheme is also presented and integrated into HD Phtoto, one of the state-of-the-art image coding systems, to verify the effectiveness of the proposed transforms.  相似文献   

5.
The GenLOT: generalized linear-phase lapped orthogonal transform   总被引:1,自引:0,他引:1  
The general factorization of a linear-phase paraunitary filter bank (LPPUFB) is revisited. From this new perspective, a class of lapped orthogonal transforms with extended overlap (generalized linear-phase lapped orthogonal transforms (GenLOTs)) is developed as a subclass of the general class of LPPUFB. In this formulation, the discrete cosine transform (DCT) is the order-1 GenLOT, the lapped orthogonal transform is the order-2 GenLOT, and so on, for any filter length that is an integer multiple of the block size. The GenLOTs are based on the DCT and have fast implementation algorithms. The implementation of GenLOTs is explained, including the method to process finite-length signals. The degrees of freedom in the design of GenLOTs are described, and design examples are presented along with image compression tests  相似文献   

6.
The authors consider expansions which give arbitrary orthonormal tilings of the time-frequency plane. These differ from the short-time Fourier transform, wavelet transform, and wavelet packets tilings in that they change over time. They show how this can be achieved using time-varying orthogonal tree structures, which preserve orthogonality, even across transitions. The method is based on the construction of boundary and transition filters; these allow us to construct essentially arbitrary tilings. Time-varying modulated lapped transforms are a special case, where both boundary and overlapping solutions are possible with filters obtained by modulation. They present a double-tree algorithm which for a given signal decides on the best binary segmentation in both time and frequency. That is, it is a joint optimization of time and frequency splitting. The algorithm is optimal for additive cost functions (e.g., rate-distortion), and results in time-varying best bases, the main application of which is for compression of nonstationary signals. Experiments on test signals are presented  相似文献   

7.
It is well known that the traditional block transform can only have at most one degree of regularity. In other words, by retaining only one subband, these transforms, including the popular discrete cosine transform (DCT), can only capture the constant signal. The ability to capture polynomials of higher orders is critical in smooth signal approximation, minimizing blocking effects. This paper presents the theory, design, and fast implementation of regularity constrained pre-/post-filters for block-based decomposition systems. We demonstrate that simple pre-/post-filtering modules added to the current block-based infrastructure can help the block transform capture not only the constant signal but the ramp signal as well. Moreover, our proposed framework can be used to generate various fast symmetric M-band wavelets with up to two degrees of regularity.  相似文献   

8.
In order to mitigate narrow-band interference in spread spectrum communications systems, novel communications receivers incorporating transform domain filtering techniques are designed. In this paper, lapped transforms are used to transform the received data signal to the transform domain wherein adaptive excision is performed. Transform domain detection algorithms, which yield bit decisions based on the remaining signal energy, are analyzed and, together with excision, are employed on a block-by-block basis to suppress single-tone and narrow-band Gaussian interference. System performance is analytically quantified in terms of the overall system bit-error rate (BER). Subsequent results are presented for a variety of channel conditions and compared to those obtained using excision algorithms based on orthonormal block transforms (Medley 1995). These results demonstrate the improved performance and increased robustness with respect to jammer frequency and bandwidth of lapped transform domain excision techniques relative to similar algorithms based on nonweighted block transforms  相似文献   

9.
Lee  C.W. Ko  H. 《Electronics letters》2005,41(24):1319-1320
An arbitrary L/M-fold image resizing method using lapped transforms is presented. The resizing operation is carried out in the lapped transform domain, by converting the images in the discrete cosine transform (DCT) domain into those in the lapped transform domain and vice versa. The proposed method provides visually fine images, while reducing the blocking effect to a very low level for images compressed at low bit rates.  相似文献   

10.
This paper proposes new integer approximations of the lapped transforms, called the integer lapped transforms (ILT), and studies their applications to image coding. The ILT are derived from a set of orthogonal sinusoidal transforms having short integer coefficients, which can be implemented with simple integer arithmetic. By employing the same scaling constants in these integer sinusoidal transforms, integer versions of the lapped orthogonal transform (LOT), the lapped biorthogonal transform (LBT), and the hierarchical lapped biorthogonal transform (HLBT) are developed. The ILTs with 5-b integer coefficients are found to have similar coding gain (within 0.06 dB) and image coding performances as their real-valued counterparts. Furthermore, by representing these integer coefficients as sum of powers-of-two coefficients (SOPOT), multiplier-less lapped transforms with very low implementation complexity are obtained. In particular, the implementation of the eight-channel multiplier-less integer LOT (ILOT), LBT (ILBT), and HLBT (IHLBT) require 90 additions and 44 shifts, 98 additions and 59 shifts, and 70 additions and 38 shifts, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号