首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the developments in multimedia and other real-time group applications, the question of how to establish multicast trees satisfying Quality-of-Service (QoS) requirements is becoming a very important problem. In this paper, multicast routing and wavelength assignment with delay constraint (MCRWA-DC) in wavelength division multiplexing (WDM) networks with sparse wavelength conversions is studied. We propose a colored multigraph model for the temporarily available wavelengths. Based on this colored multigraph model, two heuristic algorithms are proposed to solve the MCRWA-DC problem. The proposed algorithms have the following advantages:(1) finish multicast routing and wavelength assignment in one step; (2) the total cost of the multicast tree is low; (3) the delay from the source node to any multicast destination node is bounded; and (4) locally minimize the number of wavelength conversions and the number of different wavelengths used to satisfy a multicast request. Simulation results show that the proposed algorithms work well and achieve satisfactory blocking probability.  相似文献   

2.
针对Ad Hoc网络中带QoS约束的多播路由问题,提出了一种新的结合MAODV多播路由发现方法和粒.子群优化算法的QoS多播路由发现算法。仿真试验显示该算法较好地改进了端到端传输的代价、延时和带宽利用率,能够找到一棵消耗趋于最小、状态稳定的多播路由树。  相似文献   

3.
In this paper, we discussed the issues of QoS multicast routing in cognitive radio ad hoc networks. The problem of our concern was: given a cognitive radio ad hoc network and a QoS multicast request, how to find a multicast tree so that the total bandwidth consumption of the multicast is minimized while the QoS requirements are met. We proposed two methods to solve it. One is a two‐phase method. In this method, we first employed a minimal spanning tree‐based algorithm to construct a multicast tree and then proposed a slot assignment algorithm to assign timeslots to the tree links such that the bandwidth consumption of the tree is minimized. The other is an integrated method that considers the multicast routing together with the slot assignment. Extensive simulations were conducted to show the performance of our proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
New multimedia applications provide guaranteed end‐to‐end quality of service (QoS) and have stringent constraints on delay, delay‐jitter, bandwidth, cost, etc. The main task of QoS routing is to find a route in the network, with sufficient resources to satisfy the constraints. Most multicast routing algorithms are not fast enough for large‐scale networks and where the source node uses global cost information to construct a multicast tree. We propose a fast and simple heuristic algorithm (EPDT) for delay‐constrained routing problem for multicast tree construction. This algorithm uses a greedy strategy based on shortest‐path and minimal spanning trees. It combines the minimum cost and the minimum radius objectives by combining respectively optimal Prim's and Dijkstra's algorithms. It biases routes through destinations. Besides, it uses cost information only from neighbouring nodes as it proceeds, which makes it more practical, from an implementation point of view. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
针对移动Ad Hoc网络QoS多播路由中普遍存在的拥塞问题,提出了一种基于协商机制的QoS多播路由协议,节点协商使用以一定QoS约束建立起的多播链路,避免过度使用多播资源引起网络拥塞,从而提高分组投递率和网络吞吐量。通过NS2仿真证明,该协议能够保证不同类型业务在网络中传输的服务质量,提高网络的利用率。  相似文献   

6.
Bin Wang Hou  J.C. 《IEEE network》2000,14(1):22-36
Multicast services have been increasingly used by various continuous media applications. The QoS requirements of these continuous media applications prompt the necessity for QoS-driven, constraint-based multicast routing. This article provides a comprehensive overview of existing multicast routing algorithms, protocols, and their QoS extension. In particular, we classify multicast routing problems according to their optimization functions and performance constraints, present basic routing algorithms in each problem class, and discuss their strengths and weaknesses. We also categorize existing multicast routing protocols, outline the issues and challenges in providing QoS in multicast routing, and point out possible future research directions  相似文献   

7.
This paper presents a novel framework for quality‐of‐service (QoS) multicast routing with resource allocation that represents QoS parameters, jitter delay, and reliability, as functions of adjustable network resources, bandwidth, and buffer, rather than static metrics. The particular functional form of QoS parameters depends on rate‐based service disciplines used in the routers. This allows intelligent tuning of QoS parameters as functions of allocated resources during the multicast tree search process, rather than decoupling the tree search from resource allocation. The proposed framework minimizes the network resource utilization while keeping jitter delay, reliability, and bandwidth bounded. This definition makes the proposed QoS multicast routing with resource allocation problem more general than the classical minimum Steiner tree problem. As an application of our general framework, we formulate the QoS multicast routing with resource allocation problem for a network consisting of generalized processor sharing nodes as a mixed‐integer quadratic program and find the optimal multicast tree with allocated resources to satisfy the QoS constraints. We then present a polynomial‐time greedy heuristic for the QoS multicast routing with resource allocation problem and compare its performance with the optimal solution of the mixed‐integer quadratic program. The simulation results reveal that the proposed heuristic finds near‐optimal QoS multicast trees along with important insights into the interdependency of QoS parameters and resources.  相似文献   

8.
刘杰  王振  冯志先  杜军平 《通信技术》2015,48(6):699-704
在通信网络中,多约束组播通信是提高网络运行效率和服务质量的重要途径。一些启发式的算法已经被用来解决多约束条件下的组播路由问题,如模拟退火算法,遗传算法,蚁群算法和粒子群优化算法等。然而,这些算法在求解多约束组播路由问题时存在收敛速度低和计算复杂度高的问题。萤火虫群优化(GSO)算法是一种近期在计算智能领域出现的卓越算法,它可以在一定程度上解决多约束组播树生成过程中收敛速度低和计算复杂度高的问题。提出了一种基于GSO的多约束组播树生成算法(GSO-MCM)。该算法可有效生成满足多约束要求的组播路由树。仿真结果表明提出的GSO-MCM算法在求解和收敛速度,以及网络规模适应性方面均有良好的性能。  相似文献   

9.
Multimedia applications, such as video‐conferencing and video‐on‐demand, often require quality of service (QoS) guarantees from the network, typically in the form of minimum bandwidth, maximum delay, jitter and packet loss constraints, among others. The problem of multicast routing subject to various forms of QoS constraints has been studied extensively. However, most previous efforts have focused on special situations where a single or a pair of constraints is considered. In general, routing under multiple constraints, even in the unicast case is an NP‐complete problem. We present in this paper two practical and efficient algorithms, called multi‐constrained QoS dependent multicast routing (M_QDMR) and (multicasting routing with multi‐constrained optimal path selection (M_MCOP)), for QoS‐based multicast routing under multiple constraints with cost optimization. We provide proof in the paper that our algorithms are correct. Furthermore, through extensive simulations, we illustrate the effectiveness and efficiency of our proposals and demonstrate their significant performance improvement in creating multicast trees with lower cost and higher success probability. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Supporting quality of service (QoS) in large-scale broadband networks poses major challenges, due to the intrinsic complexity of the corresponding resource allocation problems. An important problem in this context is how to partition QoS requirements along a selected topology (path for unicast and tree for multicast). As networks grow in size, the scalability of the solution becomes increasingly important. This calls for efficient algorithms, whose computational complexity is less dependent on the network size. In addition, recently proposed precomputation-based methods can be employed to facilitate scalability by significantly reducing the time needed for handling incoming requests. We present a novel solution technique to the QoS partition problem(s), based on a "divide-and-conquer" scheme. As opposed to previous solutions, our technique considerably reduces the computational complexity in terms of dependence on network size; moreover, it enables the development of precomputation schemes. Hence, our technique provides a scalable approach to the QoS partition problem, for both unicast and multicast. In addition, our algorithms readily generalize to support QoS routing in typical settings of large-scale networks.  相似文献   

11.
In recent years, multicast communication is widely used by network providers to deliver multimedia contents. Quality of service (QoS) provisioning is one of the most important issues while transmitting multimedia contents using multicast. Traditional IP multicasting techniques suffer from reliability, scalability and have limitations to provide appropriate QoS for multimedia applications based on service level agreement (SLA). Nowadays, the advent of software defined networking (SDN), enables network providers to manage their networks dynamically and guarantee QoS parameters for customers based on SLA. SDN provides capabilities to monitor network resources and allows to dynamically configure desired multicasting policies. In this paper, we proposed a novel multicasting technique to guarantee QoS for multimedia applications over SDN. To deliver multimedia contents in an efficient manner, our proposed method models multicast routing as a delay constraint least cost (DCLC) problem. As DCLC problem is NP-Complete, we proposed an approximation algorithm using teaching–learning-based optimization to solve this problem. We evaluated our proposed method under different topologies. Experimental results confirmed that our proposed method outperforms IP multicast routing protocol, and it achieves a gain of about 25% for peak signal-to-noise ratio.  相似文献   

12.
In this paper we propose a QoS‐based routing algorithm for dynamic multicasting. The complexity of the problem can be reduced to a simple shortest path problem by applying a Weighted Fair Queuing (WFQ) service discipline. Using a modified Bellman–Ford algorithm, the proposed routing builds a multicast tree, where a node is added to the existing multicast tree without re‐routing and satisfying QoS constraints. With user defined life‐time of connection this heuristic algorthm builds multicast tree which is near optimum over the whole duration of session. Simulation results show that tree costs are nearly as good as other dynamic multicast routings that does not consider QoS. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
光组播路由代价与波长使用量的联合优化方法   总被引:1,自引:1,他引:0  
为解决光组播路由中组播中路由代价和波长资源消耗单一化造成的组播路树路由的代价过高问题,在分光节点约束条件下,提出了光组播路由代价与波长使用量联合优化的长路优先(LPF)方法和短路优先(SPF)方法。算法通过检查最小光组播树是否存在节点分光约束的问题,根据设置的波长使用代价控制因子,使LPF或SPF的路由代价和波长使用量最小。LPF方法首先选择组播树最长路径或新波长通道重路由受分光约束的目的节点,SPF方法先选择组播树中最短路径或新波长通道重路由受分光约束的目的节点,仿真结果表明,本文提出的两种联合优化方法都能实现路由代价较低和波长需求较少的目的。  相似文献   

14.
The mobile multimedia applications have recently generated much interest in wireless ad hoc networks with supporting the quality-of-service (QoS) communications. The QoS metric considered in this work is the reserved bandwidth, i.e., the time slot reservation. We approach this problem by assuming a common channel shared by all hosts under a TDMA (Time Division Multiple Access) channel model. In this paper, we propose a new TDMA-based QoS multicast routing protocol, namely hexagonal-tree QoS multicast protocol, for a wireless mobile ad hoc network. Existing QoS routing solutions have addressed this problem by assuming a stronger multi-antenna model or a less-strong CDMA-over-TDMA channel model. While more practical and less costly, using a TDMA model needs to face the challenge of radio interference problems. The simpler TDMA model offers the power-saving nature. In this paper, we propose a new multicast tree structure, namely a hexagonal-tree, to serve as the QoS multicasting tree, where the MAC sub-layer adopts the TDMA channel model. In this work, both the hidden-terminal and exposed-terminal problems are taken into consideration to possibly exploit the time-slot reuse capability. The hexagonal-based scheme offers a higher success rate for constructing the QoS multicast tree due to the use of the hexagonal-tree. A hexagonal-tree is a tree whose sub-path is a hexagonal-path. A hexagonal-path is a special two-path structure. This greatly improves the success rate by means of multi-path routing. Performance analysis results are discussed to demonstrate the achievement of efficient QoS multicasting.  相似文献   

15.
Huayi  Xiaohua   《Ad hoc Networks》2007,5(5):600-612
In this paper, we investigate the issues of QoS multicast routing in wireless ad hoc networks. Due to limited bandwidth of a wireless node, a QoS multicast call could often be blocked if there does not exist a single multicast tree that has the requested bandwidth, even though there is enough bandwidth in the system to support the call. In this paper, we propose a new multicast routing scheme by using multiple paths or multiple trees to meet the bandwidth requirement of a call. Three multicast routing strategies are studied, SPT (shortest path tree) based multiple-paths (SPTM), least cost tree based multiple-paths (LCTM) and multiple least cost trees (MLCT). The final routing tree(s) can meet the user’s QoS requirements such that the delay from the source to any destination node shall not exceed the required bound and the aggregate bandwidth of the paths or trees shall meet the bandwidth requirement of the call. Extensive simulations have been conducted to evaluate the performance of our three multicast routing strategies. The simulation results show that the new scheme improves the call success ratio and makes a better use of network resources.  相似文献   

16.
张品  李乐民  王晟 《电子学报》2006,34(6):1114-1118
QoS保证下的多播服务对于许多多媒体实时应用程序是重要的,QoS约束下的多播路由协议要求寻找连接源节点和目标节点集的支撑树使得端到端的QoS约束得以满足同时优化网络资源消耗,延迟约束最小代价树DCST是其中的关键问题.本文提出一个关于DCST的分支优化算法,该算法的核心思想是通过反向分支调节过程调整不满足QoS约束的路径并且减少对原支撑树结构的影响.仿真显示本文的算法对于实际网络是有效的.  相似文献   

17.
In this paper, we study two versions of the multicast routing problem in multirate loss networks: complete and partial. In the complete version of the multicast routing problem, the identities of all destination nodes are available to the multicast routing algorithm at once. Conversely, in the partial version of the multicast problem, the identities of the destination nodes are revealed to the routing algorithm one by one. Although the complete version of the multicast routing problem, also known as the Steiner tree problem, has been well studied in the literature, less attention has been paid for the definition of link costs and evaluating the performance of multicast routing algorithm from the network revenue point of view. Therefore, in this paper, we first propose two approaches, namely, the Markov Decision Processbased (MDPbased) and Least Loaded Routingbased (LLRbased) approaches, for defining link costs. Several heuristic multicast routing algorithms are then proposed for both fully connected networks and sparsely connected networks. We have also proposed a new performance metric, referred to as fractional reward loss, for evaluating the performance of multicast routing algorithms. Our simulation results indicate that algorithms based on partial destination information yield worse performance than those based on complete information. We also found that, for fully connected networks, algorithms that use LLRbased link costs yield very competitive performance as compared to those that use MDP approach. However, for sparsely connected networks, LLRbased algorithms yield significantly worse performance as compared to the MDPbased algorithms.  相似文献   

18.
Multicast (MC) routing algorithms capable of satisfying the quality of service (QoS) requirements of real-time applications will be essential for future high-speed networks. We compare the performance of all of the important MC routing algorithms when applied to networks with asymmetric link loads. Each algorithm is judged based on the quality of the MC trees it generates and its efficiency in managing the network resources. Simulation results over random networks show that unconstrained algorithms are not capable of fulfilling the QoS requirements of real-time applications in wide-area networks. Simulations also reveal that one of the unconstrained algorithms, reverse path multicasting (RPM), is quite inefficient when applied to asymmetric networks. We study how combining routing with resource reservation and admission control improves the RPM's efficiency in managing the network resources. The performance of one semiconstrained heuristic, MSC, three constrained Steiner tree (CST) heuristics, Kompella, Pasquale, and Polyzos (1992), constrained adaptive ordering (CAO), and bounded shortest multicast algorithm (BSMA), and one constrained shortest path tree (CSPT) heuristic, the constrained Dijkstra heuristic (CDKS) are also studied. Simulations show that the semiconstrained and constrained heuristics are capable of successfully constructing MC trees which satisfy the QoS requirements of real-time traffic. However, the cost performance of the heuristics varies. The BSMA's MC trees are lower in cost than all other constrained heuristics. Finally, we compare the execution times of all algorithms, unconstrained, semiconstrained, and constrained  相似文献   

19.
动态QoS多播路由协议   总被引:24,自引:0,他引:24       下载免费PDF全文
李腊元  李春林 《电子学报》2003,31(9):1345-1350
本文主要研讨了具有QoS约束的动态多播路由问题.文中描述了一种适用于QoS多播路由的网络模型,提出了一种动态QoS多播路由协议(DQMRP),该协议能操作在单播路由协议的顶层,它只要求网络链路(或节点)的局部状态信息,不需要维护全局状态信息.DQMRP可有效地减少构造一棵多播树的开销,多播组成员可动态地加入/退出多播会晤.该协议可搜索多条可行树枝,并能选择一条最优(或近优)树枝将新成员连接到多播树.文中给出了DQMRP的正确性证明和复杂性分析,并通过仿真实验验证了该协议的可用性和有效性.  相似文献   

20.
This paper discusses quality-of-service (QoS) multicast in wavelength-division multiplexing (WDM) networks. Given a set of QoS multicast requests, we are to find a set of cost suboptimal QoS routing trees and assign wavelengths to them. The objective is to minimize the number of wavelengths in the system. This is a challenging issue. It involves not only optimal QoS multicast routing, but also optimal wavelength assignment. Existing methods consider channel setup in WDM networks in two separate steps: routing and wavelength assignment, which has limited power in minimizing the number of wavelengths. In this paper, we propose a new optimization method, which integrates routing and wavelength assignment in optimization of wavelengths. Two optimization algorithms are also proposed in minimizing the number of wavelengths. One algorithm minimizes the number of wavelengths through reducing the maximal link load in the system; while the other does it by trying to free out the least used wavelengths. Simulation results demonstrate that the proposed algorithms can produce suboptimal QoS routing trees and substantially save the number of wavelengths  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号