首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction of mobile sinks into a wireless sensor network can largely improve the network performance. However, sink mobility can cause unexpected changes of network topology, which may bring excessive protocol overhead for route maintenance and may offset the benefit from using mobile sinks. In this paper, we propose an efficient data‐driven routing protocol (DDRP) to address this problem. The design objective is to effectively reduce the protocol overhead for data gathering in wireless sensor networks with mobile sinks. DDRP exploits the broadcast feature of wireless medium for route learning. Specifically, each data packet carries an additional option recording the known distance from the sender of the packet to target mobile sink. The overhearing of transmission of such a data packet will gratuitously provide each listener a route to a mobile sink. Continuous such route‐learning among nodes will provide fresh route information to more and more nodes in the network. When no route to mobile sink is known, random walk routing simply is adopted for data packet forwarding. Simulation results show that DDRP can achieve much lower protocol overhead and longer network lifetime as compared with existing work while preserving high packet delivery ratio. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Reactive routing protocols for mobile ad hoc networks reduce the routing cost in high mobility environments where link failures are frequent. However, route discovery in these protocols is typically performed via network‐wide flooding, which consumes a substantial amount of bandwidth and causes a significant latency to data packets. To improve the dynamic source routing (DSR) protocol and overcome these limitations, we propose two optimization techniques, viz. generalized salvaging mechanism and cache maintenance using a distributed topology discovery mechanism through mobile ant‐agents. We show, by simulations, that our contributions improve the DSR performance, and particularly in large scale networks with high mobility and heavy load that cause frequent link failures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
On Understanding Transient Interdomain Routing Failures   总被引:2,自引:0,他引:2  
The convergence time of the interdomain routing protocol, BGP, can last as long as 30 minutes. Yet, routing behavior during BGP route convergence is poorly understood. During route convergence, an end-to-end Internet path can experience a transient loss of reachability. We refer to this loss of reachability as transient routing failure. Transient routing failures can lead to packet losses, and prolonged packet loss bursts can make the performance of applications such as Voice-over-IP and interactive games unacceptable. In this paper, we study how routing failures can occur in the Internet. With the aid of a formal model that captures transient failures of the interdomain routing protocol, we derive the sufficient conditions that transient routing failures could occur. We further study transient routing failures in typical BGP systems where commonly used routing policies are applied. Network administrators can apply our analysis to improve their network performance and stability.  相似文献   

4.
王蕾  陈家琪 《黑龙江电子技术》2013,(11):186-189,193
针对DSR路由协议因节点频繁移动,路由发现和路由维护过程频繁发生,导致数据传输的时延增加和丢包率增加的问题.在DSR路由协议基础上,提出一种带有分组的DSR路由协议(GDSR).该协议通过K-medoids聚类算法合理地选择组头,使得分组路由协议更加适合车载自组网的多变的拓扑结构.仿真结果表明,带有分组的GDSR路由协议能够降低数据传输的端到端的时延和丢包率.  相似文献   

5.
主要分析了Ad Hoc网络中单径路由协议和多径路由协议的特点。从路由中断时所传输分组的丢失率角度考虑,提出了一种单径路由和多径路由的路由协议选择算法。该算法考虑了由于网络的动态拓扑导致链路频繁失效时,原有路由中各节点缓存的分组会被丢弃的特征,通过选择合适的路由协议,降低分组的丢失概率,提高网络效率。  相似文献   

6.
Introducing mobile sinks into a wireless sensor network can effectively improve the network performance. However, sink mobility can bring excessive protocol overhead for route maintenance and may offset the benefit from using mobile sinks. In this paper, we propose a dynamic layered routing protocol to address this problem. The proposed protocol integrates dynamic layered Voronoi scoping and dynamic anchor selection to effectively reduce the dissemination scopes and frequencies of routing updates as the sinks move in the network. Simulation results show that the proposed protocol can effectively reduce the protocol overhead while ensuring high packet delivery ratio as compared with existing work. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
在Ad Hoc网中,经常发生链路失效和路由变化。TCP把数据包的丢失归结为链路拥塞,所以TCP在Ad Hoc网中表现很差。在本文中通过应用一种新的方法,基于传输包乱序检测与响应方法,研究TCP在Ad Hoc网中的性能。通过实验结果表明,此算法解决了,提高了网络的吞吐量。  相似文献   

8.
In recent research, link stability is getting tremendous attention in mobile adhoc networks (MANETs), because of several impediments that occur in a reliable and robust network. Link stability metric is used to improve network performance in terms of end-to-end delay, data success delivery ratio (DSDR) and available route time (ART). Energy consumption, bandwidth and communication delay of major concern in ad hoc networks. A high mobility of MANET nodes reduces the reliability of network communication. In a dynamic networks, high mobility of the nodes makes it very difficult to predict the dynamic routing topology and hence cause route/link failures. Multicast in MANETs is an emerging trend that effectively improves the performance while lowering the energy consumption and bandwidth usage. Multicast routing protocol transmits a packet to multicast a group at a given time instant to achieve a better utilization of resources. In this paper, node mobility is considered to map better their movement in the network. So, the links with long active duration time can be identified as a stable link for route construction. Variation in signal strength is used to identify whether the direction of the node is towards or away from estimating node. We consider signal strength as QoS metric to calculate link stability for route construction. Efforts are made to identify the link with highly probable longer lifetime as the best suitable link between two consecutive nodes. We predict the movement time of nodes that define the route path to the node destination. Exata/cyber simulator is used for network simulation. The simulation results of the proposed routing protocol are compared with on-demand multicast routing protocol and E-ODMRP, which works on minimum hop count path. Analysis of our simulation results has shown improvement of various routing performance metrics such as DSDR, ART, routing overhead and packet drop ratio.  相似文献   

9.
Disasters create emergency situations and the services provided must be coordinated quickly via a communication network. Mobile adhoc networks (MANETs) are suited for ubiquitous communication during emergency rescue operations, since they do not rely on infrastructure. The route discovery process of on-demand routing protocols consumes too much bandwidth due to high routing overhead. Frequent route changes also results in frequent route computation process. Energy efficiency, quick response time, and scalability are equally important for routing in emergency MANETs. In this paper, we propose an energy efficient reactive protocol named Weighted-CDSR for routing in such situations. This protocol selects a subset of network nodes named Maximum Weighted Minimum Connected Dominating Set (MWMCDS) based on weight, which consists of link stability, mobility and energy. The MWMCDS provides the overall network control and data forwarding support. In this protocol, for every two nodes u and v in the network there exists a path between u and v such that all intermediate nodes belong to MWMCDS. Incorporating route stability into routing reduces the frequency of route failures and sustains network operations over an extended period of time. With fewer nodes providing overall network control and data forwarding support, the proposed protocol creates less interference and consumes less energy. The simulation results show that the proposed protocol is superior to other protocols in terms of packet delivery ratio, control message overhead, transmission delay and energy consumption.  相似文献   

10.
It is well known that today’s inter-domain routing protocol, Border Gateway Protocol (BGP), converges slowly during network failures. Due to the distribution nature of Internet routing decisions and the rate-limiting timer Minimum Route Advertisement Interval (MRAI) of BGP, unavoidable convergence latency is introduced in reaction to network changes. During the period of convergence temporarily routing table inconsistencies cause short-term routing blackholes and loops which result in widespread temporary burst packet loss. In this paper, we present ROute-Free Forwarding (ROFF) — a novel technique for packet delivering continuously during periods of convergence. With slightly modifications on IP packet header and BGP, route loops and blackholes can be avoided. Our preliminary evaluation demonstrates that ROFF succeeds in reducing the number of Autonomous Systems (ASes) which experience burst packet loss and the duration of packet loss.  相似文献   

11.
The dynamic nature of mobile nodes of ad hoc network is mostly affected by security problems which reduce data forwarding rate in multimedia sources. Due to the rapid growth of wireless applications, the different multitalented routing protocols are proposed in recent years. But the recent protocols are not efficient for multimedia applications, till now, specific security aware routing protocols are not proposed for multimedia data transfers. In this paper, we proposed trust enhanced cluster based multipath routing (TECM) algorithm. We use energy efficient PSO algorithm used to create cluster formation and cluster head, super cluster head are selected from trust values, which compute form proposed TECM algorithm. The multi trust factors are used for trust computation, such as frame/packet loss ratio, frame/packet forward energy, frame/packet receiving energy, routing overhead, received signal strength, frame/packet forward rate, average forward delay and protocol deviation flag. We then combine proposed TECM algorithm with standard multipath OLSR protocol (TECM-OLSR) to analyze the performance of proposed algorithm. The simulated results show that proposed TECM-OLSR protocol is very effective in terms of loss and delivery rate, delay, routing overhead and network lifetime compare to FPNT-OLSR.  相似文献   

12.
Mobility in ad hoc networks causes frequent link failures, which in turn causes packet losses. TCP attributes these packet losses to congestion. This incorrect inference results in frequent TCP re-transmission time-outs and therefore a degradation in TCP performance even at light loads. We propose mechanisms that are based on signal strength measurements to alleviate such packet losses due to mobility. Our key ideas are (a) if the signal strength measurements indicate that a link failure is most likely due to a neighbor moving out of range, in reaction, facilitate the use of temporary higher transmission power to keep the link alive and, (b) if the signal strength measurements indicate that a link is likely to fail, initiate a route re-discovery proactively before the link actually fails. We make changes at the MAC and the routing layers to predict link failures and estimate if a link failure is due to mobility. We also propose a simple mechanism at the MAC layer that can help alleviate false link failures, which occur due to congestion when the IEEE 802.11 MAC protocol is used. We compare the above proactive and reactive schemes and also demonstrate the benefits of using them together and along with our MAC layer extension. We show that, in high mobility, the goodput of a TCP session can be improved by as much as 75% at light loads (when there is only one TCP session in the network) when our methods are incorporated. When the network is heavily loaded (i.e., there are multiple TCP sessions in the network), the proposed schemes can improve the aggregate goodput of the TCP sessions by about 14–30%, on average.  相似文献   

13.
A mobile ad hoc network (MANET) is a self-configurable network connected by wireless links. This type of network is only suitable for provisional communication links as it is infrastructure-less and there is no centralized control. Providing QoS and security aware routing is a challenging task in this type of network due to dynamic topology and limited resources. The main purpose of secure and trust based on-demand multipath routing is to find trust based secure route from source to destination which will satisfy two or more end to end QoS constraints. In this paper, the standard ad hoc on-demand multi-path distance vector protocol is extended as the base routing protocol to evaluate this model. The proposed mesh based multipath routing scheme to discover all possible secure paths using secure adjacent position trust verification protocol and better link optimal path find by the Dolphin Echolocation Algorithm for efficient communication in MANET. The performance analysis and numerical results show that our proposed routing protocol produces better packet delivery ratio, reduced packet delay, reduced overheads and provide security against vulnerabilities and attacks.  相似文献   

14.
Associativity-Based Routing for Ad Hoc Mobile Networks   总被引:56,自引:0,他引:56  
This paper presents a new, simple and bandwidth-efficient distributed routing protocol to support mobile computing in a conference size ad-hoc mobile network environment. Unlike the conventional approaches such as link-state and distance-vector distributed routing algorithms, our protocol does not attempt to consistently maintain routing information in every node. In an ad-hoc mobile network where mobile hosts (MHs) are acting as routers and where routes are made inconsistent by MHs' movement, we employ an associativity-based routing scheme where a route is selected based on nodes having associativity states that imply periods of stability. In this manner, the routes selected are likely to be long-lived and hence there is no need to restart frequently, resulting in higher attainable throughput. Route requests are broadcast on a per need basis. The association property also allows the integration of ad-hoc routing into a BS-oriented Wireless LAN (WLAN) environment, providing the fault tolerance in times of base stations (BSs) failures. To discover shorter routes and to shorten the route recovery time when the association property is violated, the localised-query and quick-abort mechanisms are respectively incorporated into the protocol. To further increase cell capacity and lower transmission power requirements, a dynamic cell size adjustment scheme is introduced. The protocol is free from loops, deadlock and packet duplicates and has scalable memory requirements. Simulation results obtained reveal that shorter and better routes can be discovered during route re-constructions.  相似文献   

15.
In mobile ad hoc networks (MANETs), channel contention and packet collision can seriously affect the performance of routing protocols, which will eventually affect the performance of the whole network. Besides, the arbitrary mobility of nodes makes contention and collision ever-changing and more complex. Thus, it is imperative to analyze the problem of contention and collision so as to build appropriate routes in MANETs. In this paper, by respectively predicting the durations of the contention and collision at every hop along the route, a minimum interference cross-layer routing protocol (MI-CLR) is proposed based on Random Waypoint (RWP) model. The new protocol classifies the interference in the network into two types; the first type of interference can only affect channel contention, while the other affects both channel contention and packet collision. Via taking the two types of interference together into account, we propose a new routing metric to build routes which guarantees that the established routes will not break frequently while having the minimum interference. Simulation results show that the MI-CLR protocol can significantly improve the network performance such as the average end-to-end delay, the packet loss ratio, the routing overhead and the throughput.  相似文献   

16.
Mobile ad hoc networks (MANETs) have been positioned as one of the most important emerging wireless communication scenarios. Temporally formed by a collection of wireless mobile hosts, a MANET does not require the aid of any centralized administration. From this stems a suite of challenges in achieving an efficient MANET routing and content delivery in order to make the best use of precious resources and reduce the routing overhead at each MANET host. One of the reported approaches for solving the issue is the use of caching, which is expected to minimize the routing overhead by taking advantage of the limited memory at each mobile host. This paper introduces a novel scheme for addressing the above issue, called Reclaim‐Based Caching (RBC) policy, which dynamically utilizes a cache replacement mechanism of reclaiming stale routes to efficiently verify and validate a recoverable caching mechanism in Dynamic Source Routing. The main design purposes of RBC are to reduce the routing control overhead, lower the end‐to‐end routing delay, enhance the packet delivery ratio, and obtain a higher throughput for improving routing performance and accelerating the Route Discovery process due to low temporary link failure and high cache utilization. Hence, we can gather all feasible and historical route information into the cache library to be reclaimed as a threshold of efficient routing control. Consequently, the proposed RBC of this paper can be used in the universal wireless network environment to achieve better routing performance and to provide a more flexible real‐time application. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Among the many multipath routing protocols, the AOMDV is widely used in highly dynamic ad hoc networks because of its generic feature. Since the communicating nodes in AOMDV are prone to link failures and route breaks due to the selection of multiple routes between any source and destination pair based on minimal hop count which does not ensure end-to-end reliable data transmission. To overcome such problems, we propose a novel node disjoint multipath routing protocol called End-to-End Link Reliable Energy Efficient Multipath Routing (E2E-LREEMR) protocol by extending AOMDV. The E2E-LREEMR finds multiple link reliable energy efficient paths between any source and destination pair for data transmission using two metrics such as Path-Link Quality Estimator and Path-Node Energy Estimator. We evaluate the performance of E2E-LREEMR protocol using NS 2.34 with varying network flows under random way-point mobility model and compare it with AOMDV routing protocol in terms of Quality of Service metrics. When there is a hike in network flows, the E2E-LREEMR reduces 30.43 % of average end-to-end delay, 29.44 % of routing overhead, 32.65 % of packet loss ratio, 18.79 % of normalized routing overhead and 12.87 % of energy consumption. It also increases rather 10.26 % of packet delivery ratio and 6.96 % of throughput than AOMDV routing protocol.  相似文献   

18.
Zhao  Wendi B. 《Ad hoc Networks》2008,6(5):661-674
In mobile ad hoc networks, node mobility causes frequent link failures, thus invalidating the routes containing those links. Once a link is detected broken, an alternate route has to be discovered, incurring extra route discovery overhead and packet latency. The traffic is also interrupted at the transport layer, and proper traffic recovery schemes have to be applied. To reduce the frequency of costly route re-discovery procedures and to maintain continuous traffic flow for reliable transport layer protocols, we suggest discovering long lifetime routes (LLR). In this paper, we first propose g-LLR, a global LLR discovery algorithm, that discovers LLRs of different route lengths for any given pair of nodes. We then propose a distributed LLR discovery scheme (d-LLR) that discovers two of the most desirable LLRs through one best-effort route discovery procedure. Simulations show that the lifetimes of the routes discovered by d-LLR are very close to those discovered by g-LLR. Simulations also show that the performance of different transport layer protocols is greatly improved by using LLRs. More importantly, traffic can remain continuous using the provided LLRs. D-LLR can be implemented as an extension to existing ad hoc routing protocols, and it improves the performance of transport layer protocols without modifications on them.  相似文献   

19.
Hotspots represent transient but highly congested regions in wireless ad hoc networks that result in increased packet loss, end-to-end delay, and out-of-order packets delivery. We present a simple, effective, and scalable hotspot mitigation protocol (HMP) where mobile nodes independently monitor local buffer occupancy, packet loss, and MAC contention and delay conditions, and take local actions in response to the emergence of hotspots, such as, suppressing new route requests and rate controlling TCP flows. We use analysis, simulation, and experimental results from a wireless testbed to demonstrate the effectiveness of HMP in mobile ad hoc networks. HMP balances resource consumption among neighboring nodes, and improves end-to-end throughput, delay, and packet loss. Our results indicate that HMP can also improve the network connectivity preventing premature network partitions. We present analysis of hotspots, and the detailed design of HMP. We evaluate the protocol’s ability to effectively mitigate hotspots in mobile ad hoc networks that are based on on-demand and proactive routing protocols.  相似文献   

20.
Multi-hop vehicle-to-vehicle communication is useful for supporting many vehicular applications that provide drivers with safety and convenience. Developing multi-hop communication in vehicular ad hoc networks (VANET) is a challenging problem due to the rapidly changing topology and frequent network disconnections, which cause failure or inefficiency in traditional ad hoc routing protocols. We propose an adaptive connectivity aware routing (ACAR) protocol that addresses these problems by adaptively selecting an optimal route with the best network transmission quality based on statistical and real-time density data that are gathered through an on-the-fly density collection process. The protocol consists of two parts: 1) select an optimal route, consisting of road segments, with the best estimated transmission quality, and 2) in each road segment of the chosen route, select the most efficient multi-hop path that will improve the delivery ratio and throughput. The optimal route is selected using our transmission quality model that takes into account vehicle densities and traffic light periods to estimate the probability of network connectivity and data delivery ratio for transmitting packets. Our simulation results show that the proposed ACAR protocol outperforms existing VANET routing protocols in terms of data delivery ratio, throughput and data packet delay. Since the proposed model is not constrained by network densities, the ACAR protocol is suitable for both daytime and nighttime city VANET scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号