首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
This paper presents DARC (Directional Adaptive Range Control), a range control mechanism using directional antennas to be implemented across multiple layers. DARC uses directional reception for range control rather than directional transmission in order to achieve both range extension and high spatial reuse. It adaptively controls the communication range by estimating dynamically changing local network density based on the transmission activities around each network node. The experimental results using simulation with detailed physical layer, IEEE 802.11 DCF MAC, and AODV protocol models have shown the successful adaptation of communication range with DARC for varied network densities and traffic loads. DARC improves the packet delivery ratio by a factor of 9 at the maximum for sparse networks while it maintains the increased network capacity for dense networks. Further, as each node adaptively changes the communication range, the network delivers up to 20% more packets with DARC compared to any fixed range configurations.Mineo Takai is a Principal Development Engineer in the Computer Science Department at University of California, Los Angeles. He received his B.S., M.S. and Ph.D. degrees, all in electrical engineering, from Waseda University, Tokyo, Japan, in 1992, 1994 and 1997 respectively.Dr. Takai’s research interests include parallel and distributed computing, mobile computing and networking, and modeling and simulation of networked systems. He is a member of the ACM, the IEEE and the IEICE.Junlan Zhou received her B.S in Computer Science from Huazhong University of Science and Technology in 1998, her M.Eng in Computer Engineering from Nanyang Technological University in 2001 and her M.S in Computer Science from University of California, Los Angeles in 2003. She is currently a Ph.D candidate in the Computer Science Department at University of California, Los Angeles. Her research interests include modeling and simulation of wireless networks, protocol design and analysis of wireless networks, and broad areas of distributed computing.Rajive Bagrodia is a Professor of Computer Science at UCLA. He obtained a Bachelor of Technology in electrical engineering from the Indian Institute of Technology, Bombay and a Ph.D. in Computer Science from the University of Texas at Austin. Professor Bagrodia’s research interests include~wireless networks, performance modeling and~simulation, and nomadic computing. He has published over a hundred research papers on the preceding topics. The research has been funded by a variety of government and industrial sponsors including the National Science Foundation, Office of Naval Research, and the Defense Advanced Research Projects Agency. He is an associate editor of the ACM Transactions on Modeling and Computer Systems (TOMACS).  相似文献   

2.
The frequency channelized receiver enables the use of practical analog-to-digital converters (ADC) to digitize ultra-wideband (UWB) signals. The design issues of the analog and digital baseband processor for the channelized receiver in a UWB transmitted reference (TR) system are investigated. In the analog part, the receiver performance is shown to be weakly dependent on the analog filter bandwidth, the filter order, and the ADC oversampling ratio assuming white input noise. In the digital part, the coarse acquisition performance is shown to be significantly better in a channelized receiver than in a fullband receiver. The implementation issues for fine synchronization and correlation window length are also studied. Lei Feng received the B.S. and M.S. degree in electrical engineering from Peking University, Beijing, in 1997 and 2000, respectively. He is currently working toward the Ph.D degree in electrical engineering at University of Southern California, Los Angeles, CA. His doctoral research focuses on the design of wideband communication transceivers for wireless and wireline applications. Won Namgoong received the BS degree in Electrical Engineering and Computer Science from the University of California at Berkeley in 1993, and the MS and Ph.D. degrees in Electrical Engineerig from Stanford University in 1995 and 1999, respectively. In 1999, he joined the faculty of the Electrical Engineering Department at the University of Southern California, where he is an Assistant Professor. His current research areas include wireless/wireline communication systems, signal processing systems, RF circuits, and low-power/high-speed circuits. In 2002, he received the National Science Foundation (NSF) CAREER Award.  相似文献   

3.
Overlay networks have made it easy to implement multicast functionality in MANETs. Their flexibility to adapt to different environments has helped in their steady growth. Overlay multicast trees that are built using location information account for node mobility and have a low latency. However, the performance gains of such trees are offset by the overhead involved in distributing and maintaining precise location information. As the degree of (location) accuracy increases, the performance improves but the overhead required to store and broadcast this information also increases. In this paper, we present SOLONet, a design to build a sub-optimal location aided overlay multicast tree, where location updates of each member node are event based. Unlike several other approaches, SOLONet doesn’t require every packet to carry location information or each node maintain location information of every other node or carrying out expensive location broadcast for each node. Our simulation results indicate that SOLONet is scalable and its sub-optimal tree performs very similar to an overlay tree built by using precise location information. SOLONet strikes a good balance between the advantages of using location information (for building efficient overlay multicast trees) versus the cost of maintaining and distributing location information of every member nodes. Abhishek Patil received his BE degree in Electronics and Telecommunications Engineering from University of Mumbai (India) in 1999 and an MS in Electrical and Computer Engineering from Michigan State University in 2002. He finished his PhD in 2005 from the Department of Computer Science and Engineering at Michigan State University. He is a research engineer at Kiyon, Inc. located in San Diego, California. His research interests include wireless mesh networks, UWB, mobile ad hoc networks, application layer multicast, location-aware computing, RFIDs, and pervasive computing. Yunhao Liu received his BS degree in Automation Department from Tsinghua University, China, in 1995, and an MA degree in Beijing Foreign Studies University, China, in 1997, and an MS and a Ph.D. degree in Computer Science and Engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science at Hong Kong University of Science and Technology. His research interests include wireless sensor networks, peer-to-peer and grid computing, pervasive computing, and network security. He is a senior member of the IEEE Computer Society. Li Xiao received the BS and MS degrees in computer science from Northwestern Polytechnic University, China, and the PhD degree in computer science from the College of William and Mary in 2002. She is an assistant professor of computer science and engineering at Michigan State University. Her research interests are in the areas of distributed and Internet systems, overlay systems and applications, and sensor networks. She is a member of the ACM, the IEEE, the IEEE Computer Society, and IEEE Women in Engineering. Abdol-Hossein Esfahanian received his B.S. degree in Electrical Engineering and the M.S. degree in Computer, Information, and Control Engineering from the University of Michigan in 1975 and 1977 respectively, and the Ph.D. degree in Computer Science from Northwestern University in 1983. He was an Assistant Professor of Computer Science at Michigan State University from September 1983 to May 1990. Since June 1990, he has been an Associate Professor with the same department, and from August 1994 to May 2004, he was the Graduate Program Director. He was awarded ‘The 1998 Withrow Exceptional Service Award’, and ‘The 2005 Withrow Teaching Excellence Award’. Dr. Esfahanian has published articles in journals such as IEEE Transactions, NETWORKS, Discrete Applied Mathematic, Graph Theory, and Parallel and Distributed Computing. He was an Associate Editor of NETWORKS, from 1996 to 1999. He has been conducting research in applied graph theory, computer communications, and fault-tolerant computing. Lionel M. Ni earned his Ph.D. degree in electrical and computer engineering from Purdue University in 1980. He is Chair Professor and Head of Computer Science and Engineering Department of the Hong Kong University of Science and Technology. His research interests include wireless sensor networks, parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of IEEE, Dr. Ni has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

4.
We analyze an architecture based on mobility to address the problem of energy efficient data collection in a sensor network. Our approach exploits mobile nodes present in the sensor field as forwarding agents. As a mobile node moves in close proximity to sensors, data is transferred to the mobile node for later depositing at the destination. We present an analytical model to understand the key performance metrics such as data transfer, latency to the destination, and power. Parameters for our model include: sensor buffer size, data generation rate, radio characteristics, and mobility patterns of mobile nodes. Through simulation we verify our model and show that our approach can provide substantial savings in energy as compared to the traditional ad-hoc network approach. Sushant Jain is a Ph.D. candidate in the Department of Computer Science and Engineering at the University of Washington. His research interests are in design and analysis of routing algorithms for networking systems. He received a MS in Computer Science from the University of Washington in 2001 and a B.Tech degree in Computer Science from IIT Delhi in 1999. Rahul C. Shah completed the B. Tech (Hons) degree from the Indian Institute of Technology, Kharagpur in 1999 majoring in Electronics and Electrical Communication Engineering. He is currently pursuing his Ph.D. in Electrical Engineering at the University of California, Berkeley. His research interests are in energy-efficient protocol design for wireless sensor/ad hoc networks, design methodology for protocols and next generation cellular networks. Waylon Brunette is a Research Engineer in the Department of Computer Science and Engineering at the University of Washington. His research interests include mobile and ubiquitous computing, wireless sensor networks, and personal area networks. Currently, he is engaged in collaborative work with Intel Research Seattle to develop new uses for embedded devices and RFID technologies in ubiquitous computing. He received a BS in Computer Engineering from the University of Washington in 2002. Gaetano Borriello is a Professor in the Department of Computer Science and Engineering at the University of Washington. His research interests are in embedded and ubiquitous computing, principally new hardware devices that integrate seamlessly into the user’s environment with particular focus on location and identification systems. His principal projects are in creating manageable RFID systems that are sensitive to user privacy concerns and in context-awareness through sensors distributed in the environment as well as carried by users. Sumit Roy received the B. Tech. degree from the Indian Institute of Technology (Kanpur) in 1983, and the M. S. and Ph. D. degrees from the University of California (Santa Barbara), all in Electrical Engineering in 1985 and 1988 respectively, as well as an M. A. in Statistics and Applied Probability in 1988. His previous academic appointments were at the Moore School of Electrical Engineering, University of Pennsylvania, and at the University of Texas, San Antonio. He is presently Prof, of Electrical Engineering, Univ. of Washington where his research interests center around analysis/design of communication systems/networks, with a topical emphasis on next generation mobile/wireless networks. He is currently on academic leave at Intel Wireless Technology Lab working on high speed UWB radios and next generation Wireless LANs. His activities for the IEEE Communications Society includes membership of several technical committees and TPC for conferences, and he serves as an Editor for the IEEE Transactions on Wireless Communications.  相似文献   

5.
Connected coverage, which reflects how well a target field is monitored under the base station, is the most important performance metric used to measure the quality of surveillance that wireless sensor networks (WSNs) can provide. To facilitate the measurement of this metric, we propose two novel algorithms for individual sensor nodes to identify whether they are on the coverage boundary, i.e., the boundary of a coverage hole or network partition. Our algorithms are based on two novel computational geometric techniques called localized Voronoi and neighbor embracing polygons. Compared to previous work, our algorithms can be applied to WSNs of arbitrary topologies. The algorithms are fully distributed in the sense that only the minimal position information of one-hop neighbors and a limited number of simple local computations are needed, and thus are of high scalability and energy efficiency. We show the correctness and efficiency of our algorithms by theoretical proofs and extensive simulations. Chi Zhang received the B.E. and M.E. degrees in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in July 1999 and January 2002, respectively. Since September 2004, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yanchao Zhang received the B.E. degree in computer communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, the M.E. degree in computer applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, in August 2006. Since September 2006, he has been an Assistant Professor in the Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark. His research interest include wireless and Internet security, wireless networking, and mobile computing. He is a member of the IEEE and ACM. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D. degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D. degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications:Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

6.
The proper functioning of mobile ad hoc networks depends on the hypothesis that each individual node is ready to forward packets for others. This common assumption, however, might be undermined by the existence of selfish users who are reluctant to act as packet relays in order to save their own resources. Such non-cooperative behavior would cause the sharp degradation of network throughput. To address this problem, we propose a credit-based Secure Incentive Protocol (SIP) to stimulate cooperation among mobile nodes with individual interests. SIP can be implemented in a fully distributed way and does not require any pre-deployed infrastructure. In addition, SIP is immune to a wide range of attacks and is of low communication overhead by using a Bloom filter. Detailed simulation studies have confirmed the efficacy and efficiency of SIP. This work was supported in part by the U.S. Office of Naval Research under Young Investigator Award N000140210464 and under grant N000140210554. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc degree from Nanyang Technological University, Singapore, in 1998, the M.E degree and the B.E degree in Computer Science and Engineering from Xi'an Jiaotong University, China, in 1996 and 1993 respectively. From Dec 1997 to Jul 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network security and routing issues. Wei Liu received his B.E. and M.E. in Electrical and Information Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001. In August 2005, he received his PhD in Electrical and Computer Engineering from University of Florida. Currently, he is a senior technical member with Scalable Network Technologies. His research interest includes cross-layer design, and communication protocols for mobile ad hoc networks, wireless sensor networks and cellular networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and a professor in August 2005. He has published over 150 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on many editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He is a senior member of the IEEE.  相似文献   

7.
Multiconstrained QoS multipath routing in wireless sensor networks   总被引:2,自引:0,他引:2  
Sensor nodes are densely deployed to accomplish various applications because of the inexpensive cost and small size. Depending on different applications, the traffic in the wireless sensor networks may be mixed with time-sensitive packets and reliability-demanding packets. Therefore, QoS routing is an important issue in wireless sensor networks. Our goal is to provide soft-QoS to different packets as path information is not readily available in wireless networks. In this paper, we utilize the multiple paths between the source and sink pairs for QoS provisioning. Unlike E2E QoS schemes, soft-QoS mapped into links on a path is provided based on local link state information. By the estimation and approximation of path quality, traditional NP-complete QoS problem can be transformed to a modest problem. The idea is to formulate the optimization problem as a probabilistic programming, then based on some approximation technique, we convert it into a deterministic linear programming, which is much easier and convenient to solve. More importantly, the resulting solution is also one to the original probabilistic programming. Simulation results demonstrate the effectiveness of our approach. This work was supported in part by the U.S. National Science Foundation under grant DBI-0529012, the National Science Foundation Faculty Early Career Development Award under grant ANI-0093241 and the Office of Naval Research under Young Investigator Award N000140210464. Xiaoxia Huang received her BS and MS in the Electrical Engineering from Huazhong University of Science and Technology in 2000 and 2002, respectively. She is completing her Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida. Her research interests include mobile computing, QoS and routing in wireless ad hoc networks and wireless sensor networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He holds a University of Florida Research Foundation (UFRF) Professorship from 2006 to 2009. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been activitely participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007).  相似文献   

8.
To achieve high throughput in wireless networks, smart forwarding and processing of packets in access routers is critical for overcoming the effects of the wireless links. However, these services cannot be provided if data sessions are protected using end-to-end encryption as with IPsec, because the information needed by these algorithms resides inside the portion of the packet that is encrypted, and can therefore not be used by the access routers. A previously proposed protocol, called Multi-layered IPsec (ML-IPsec) modifies IPsec in a way so that certain portions of the datagram may be exposed to intermediate network elements, enabling these elements to provide performance enhancements. In this paper we extend ML-IPsec to deal with mobility and make it suitable for wireless networks. We define and implement an efficient key distribution protocol to enable fast ML-IPsec session initialization, and two mobility protocols that are compatible with Mobile IP and maintain ML-IPsec sessions. Our measurements show that, depending on the mobility protocol chosen, integrated Mobile IP/ML-IPsec handoffs result in a pause of 53–100 milliseconds, of which only 28–75 milliseconds may be attributed to ML-IPsec. Further, we provide detailed discussion and performance measurements of our MML-IPsec implementation. We find the resulting protocol, when coupled with SNOOP, greatly increases throughput over scenarios using standard TCP over IPsec (165% on average). By profiling the MML-IPsec implementation, we determine the bottleneck to be sending packets over the wireless link. In addition, we propose and implement an extension to MML-IPsec, called dynamic MML-IPsec, in which a flow may switch between plaintext, IPsec and MML-IPsec. Using dynamic MML-IPsec, we can balance the tradeoff between performance and security. Heesook Choi is a Ph.D. candidate in the Department of Computer Science and Engineering at the Pennsylvania State University. She received her B.S. degree in Computer Science and Statistics and M.S. degree in Computer Science from the Chungnam National University, Korea, in 1990 and 1992 respectively. She was a senior research staff in Electronics and Telecommunications Research Institute (ETRI) in Korea before she enrolled in the Ph.D. program at the Pennsylvania State University in August 2002. Her research interests lie in security and privacy in distributed systems and wireless mobile networks, focusing on designing algorithms and conducting system research. Hui Song is a Ph.D. candidate in the Department of Computer Science and Engineering at the Pennsylvania State University, University Park. He received the M.E. degree in Computer Science from Tsinghua University, China in 2000. His research interests are in the areas of network and system security, wireless ad-hoc and sensor networks, and mobile computing. He was a recipient of the research assistant award of the Department of Computer Science and Engineering at the Pennsylvania State University in 2005. Guohong Cao received his BS degree from Xian Jiaotong University, Xian, China. He received the MS degree and Ph.D. degree in computer science from the Ohio State University in 1997 and 1999 respectively. Since then, he has been with the Department of Computer Science and Engineering at the Pennsylvania State University, where he is currently an Associate Professor. His research interests are wireless networks and mobile computing. He has published over one hundred papers in the areas of sensor networks, wireless network security, data dissemination, resource management, and distributed fault-tolerant computing. He is an editor of the IEEE Transactions on Mobile Computing and IEEE Transactions on Wireless Communications, a guest editor of special issue on heterogeneous wireless networks in ACM/Kluwer Mobile Networking and Applications, and has served on the program committee of many conferences. He was a recipient of the NSF CAREER award in 2001. Thomas F. La Porta received his B.S.E.E. and M.S.E.E. degrees from The Cooper Union, New York, NY, and his Ph.D. degree in Electrical Engineering from Columbia University, New York, NY. He joined the Computer Science and Engineering Department at Penn State in 2002 as a Full Professor. He is the Director of the Networking and Security Research Center at Penn State. Prior to joining Penn State, Dr. La Porta was with Bell Laboratories since 1986. He was the Director of the Mobile Networking Research Department in Bell Laboratories, Lucent Technologies where he led various projects in wireless and mobile networking. He is a Bell Labs Fellow. Dr. La Porta was the founding Editor-in-Chief of the IEEE Transactions on Mobile Computing and served as Editor-in-Chief of IEEE Personal Communications Magazine. He is currently the Director of Magazines for the IEEE Communications Society and is a member of the Communications Society Board of Governors. He has published over 50 technical papers and holds 28 patents. His research interests include mobility management, signaling and control for wireless networks, mobile data systems, and protocol design.  相似文献   

9.
The MANTIS MultimodAl system for NeTworks of In-situ wireless Sensors provides a new multithreaded cross-platform embedded operating system for wireless sensor networks. As sensor networks accommodate increasingly complex tasks such as compression/aggregation and signal processing, preemptive multithreading in the MANTIS sensor OS (MOS) enables micro sensor nodes to natively interleave complex tasks with time-sensitive tasks, thereby mitigating the bounded buffer producer-consumer problem. To achieve memory efficiency, MOS is implemented in a lightweight RAM footprint that fits in less than 500 bytes of memory, including kernel, scheduler, and network stack. To achieve energy efficiency, the MOS power-efficient scheduler sleeps the microcontroller after all active threads have called the MOS sleep() function, reducing current consumption to the μA range. A key MOS design feature is flexibility in the form of cross-platform support and testing across PCs, PDAs, and different micro sensor platforms. Another key MOS design feature is support for remote management of in-situ sensors via dynamic reprogramming and remote login. Shah Bhatti is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He also works as a Senior Program Manager in the R&D Lab for Imaging and Printing Group (IPG) at Hewlett Packard in Boise, Idaho. He has participated as a panelist in workshops on Integrated Architecture for Manufacturing and Component-Based Software Engineering, at IJCAI ‘89 and ICSE ‘98, respectively. Hewlett Packard has filed several patents on his behalf. He received an MSCS and an MBA from the University of Colorado, an MSCE from NTU and a BSCS from Wichita State University. His research interests include power management, operating system design and efficient models for wireless sensor networks. James Carlson is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his Bachelor’s degree from Hampshire College in 1997. His research is supported by the BP Visualization Center at CU-Boulder. His research interests include computer graphics, 3D visualization, and sensor-enabled computer-human user interfaces. Hui Dai is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.E. from the University of Science and Technology, China in 2000, and received has M.S. in Computer Science from the University of Colorado at Boulder in 2002. He has been co-leading the development of the MANTIS OS. His research interests include system design for wireless sensor networks, time synchronization, distributed systems and mobile computing. Jing Deng is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.E. from Univeristy of Electronic Science and Technology of China in 1993, and his M.E from Institute of Computing Technology, Chinese Academy of Science in 1996. He has published four papers on security wireless sensor networks and is preparing a book chapter on security, privacy, and fault tolerance in sensor networks. His research interests include wireless security, secure network routing, and security for sensor networks. Jeff Rose is an M.S. student in Computer Science at the University of Colorado at Boulder. He received his B.S. in Computer Science from the University of Colorado at Boulder in 2003. He has been co-leading the development of the MANTIS operating system. His research interests include data-driven routing in sensor networks. Anmol Sheth is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.S. in Computer Science from the University of Pune, India in 2001. His research interests include MAC layer protocol design, energy-efficient wireless communication, and adapting communications to mobility. Brian Shucker is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.S. in Computer Science from the University of Arizona in 2001, and his M.S. in Computer Science from the University of Colorado at Boulder in December 2003. He has been co-leading the development of the MANTIS operating system. His research interests in wireless sensor networks include operating systems design, communication networking, and robotic sensor networks. Charles Gruenwald is an undergraduate student in Computer Science at the University of Colorado at Boulder. He joined the MANTIS research group in Fall 2003 as an undergraduate researcher. Adam Torgerson is an undergraduate student in Computer Science at the University of Colorado at Boulder. He joined the MANTIS research group in Fall 2003 as an undergraduate researcher. Richard Han joined the Department of Computer Science at the University of Colorado at Boulder in August 2001 as an Assistant Professor, Prof. Han leads the MANTIS wireless sensor networking research project, http://mantis.cs.colorado.edu. He has served on numerous technical program committees for conferences and workshops in the field of wireless sensor networks. He received a National Science Foundation CAREER Award in 2002 and IBM Faculty Awards in 2002 and 2003. He was a Research Staff Member at IBM’s Thomas J. Watson Research Center in Hawthorne, New York from 1997-2001. He received his Ph.D. in Electrical Engineering from the University of California at Berkeley in 1997, and his B.S. in Electrical Engineering with distinction from Stanford University in 1989. His research interests include systems design for sensor networks, secure wireless sensor networks, wireless networking, and sensor-enabled user interfaces.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

10.
Topology-transparent scheduling is an attractive medium access control technique for mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs). The transmission schedule for each node is fixed and guarantees a bounded delay independent of which nodes are its neighbours, as long as the active neighbourhood is not too dense. Most of the existing work on topology-transparent scheduling assumes that the nodes are synchronized on frame boundaries. Synchronization is a challenging problem in MANETs and in WSNs. Hence, we study the relationships among topology-transparent schedules, expected delay, and maximum delay, for successively weaker models of synchronization: frame-synchronized, slot-synchronized, and asynchronous transmission. For each synchronization model, we give constructive proofs of existence of topology-transparent schedules, and bound the least maximum delay. Perhaps surprisingly, the construction for the asynchronous model is a simple variant of the slot synchronized model. While it is foreseen that the maximum delay increases as the synchronization model is weakened, the bound is too pessimistic. The results on expected delay show that topology-transparent schedules are very robust to node density higher than the construction is designed to support, allowing the nodes to cope well with mobility, and irregularities of their deployment. Wensong Chu received his M.S. in Applied Mathematics from Shanghai Jiao Tong University, China, in 1993; received his M.S. in Computer Networks (Electrical Engineering) from the University of Southern California in 2000; received his Ph.D. in Mathematics from the University of Southern California in 2002. He was with the Department of Computer Science and Engineering at Arizona State University as a post-doctoral fellow from 2002 to 2003. Currently he is doing research at the CMS Bondedge in California. His research interests include sequence designs for communications, combinatorial coding methods, mobile ad hoc networks and sensor networks, financial engineering and combinatorial design theory. Charles J. Colbourn was born in Toronto, Canada in 1953. He completed his B.Sc. degree at the University of Toronto in 1976, M.Math. at the University of Waterloo in 1978, and Ph.D. at the University of Toronto in 1980, all in computer science. He has held faculty positions at the University of Saskatchewan, the University of Waterloo, and the University of Vermont, and is now Professor of Computer Science and Engineering at Arizona State University. He is co-editor of the CRC Handbook of Combinatorial Designs and author of Triple Systems and The Combinatorics of Network Reliability, both from Oxford University Press. He is editor-in-chief of the Journal of Combinatorial Designs. His research concerns applications of combinatorial designs in networking, computing, and communications. Violet R. Syrotiuk earned the Ph.D. degree in Computer Science from the University of Waterloo (Canada) in 1992. She joined Arizona State University in 2002 and is currently an Assistant Professor of Computer Science and Engineering. Dr. Syrotiuk’s research is currently supported by three grants from the National Science Foundation, and contracts from Los Alamos National Laboratory, and the Defence Science and Technology Organisation in Australia. She serves on the Editorial Board of Computer Networks, and on the Technical Program Committee of several major conferences including MobiCom and Infocom. Her research interests include mobile ad hoc and sensor networks, in particular MAC protocols with an emphasis on adaptation, topology-transparency, and energy efficiency, dynamic spectrum utilization, mobile network models, and protocol interaction and cross-layer design. She is a member of the ACM and the IEEE.  相似文献   

11.
Scheduling Sleeping Nodes in High Density Cluster-based Sensor Networks   总被引:2,自引:0,他引:2  
In order to conserve battery power in very dense sensor networks, some sensor nodes may be put into the sleep state while other sensor nodes remain active for the sensing and communication tasks. In this paper, we study the node sleep scheduling problem in the context of clustered sensor networks. We propose and analyze the Linear Distance-based Scheduling (LDS) technique for sleeping in each cluster. The LDS scheme selects a sensor node to sleep with higher probability when it is farther away from the cluster head. We analyze the energy consumption, the sensing coverage property, and the network lifetime of the proposed LDS scheme. The performance of the LDS scheme is compared with that of the conventional Randomized Scheduling (RS) scheme. It is shown that the LDS scheme yields more energy savings while maintaining a similar sensing coverage as the RS scheme for sensor clusters. Therefore, the LDS scheme results in a longer network lifetime than the RS scheme. Jing Deng received the B.E. and M.E. degrees in Electronic Engineering from Tsinghua University, Beijing, P. R. China, in 1994 and 1997, respectively, and the Ph.D. degree in Electrical and Computer Engineering from Cornell University, Ithaca, NY, in 2002. Dr. Deng is an assistant professor in the Department of Computer Science at the University of New Orleans. From 2002 to 2004, he visited the CASE center and the Department of Electrical Engineering and Computer Science at Syracuse University, Syracuse, NY as a research assistant professor, supported by the Syracuse University Prototypical Research in Information Assurance (SUPRIA) program. He was a teaching assistant from 1998 to 1999 and a research assistant from 1999 to 2002 in the School of Electrical and Computer Engineering at Cornell University. His interests include mobile ad hoc networks, wireless sensor networks, wireless network security, energy efficient wireless networks, and information assurance. Wendi B. Heinzelman is an assistant professor in the Department of Electrical and Computer Engineering at the University of Rochester. She received a B.S. degree in Electrical Engineering from Cornell University in 1995 and M.S. and Ph.D. degrees in Electrical Engineering and Computer Science from MIT in 1997 and 2000 respectively. Her current research interests lie in the areas of wireless communications and networking, mobile computing, and multimedia communication. Dr. Heinzelman received the NSF Career award in 2005 for her work on cross-layer optimizations for wireless sensor networks, and she received the ONR Young Investigator award in 2005 for her research on balancing resource utilization in wireless sensor networks. Dr. Heinzelman was co-chair of the 1st Workshop on Broadband Advanced Sensor Networks (BaseNets '04), and she is a member of Sigma Xi, the IEEE, and the ACM. Yunghsiang S. Han was born in Taipei, Taiwan, on April 24, 1962. He received the B.S. and M.S. degrees in electrical engineering from the National Tsing Hua University, Hsinchu, Taiwan, in 1984 and 1986, respectively, and the Ph.D. degree from the School of Computer and Information Science, Syracuse University, Syracuse, NY, in 1993. From 1986 to 1988 he was a lecturer at Ming-Hsin Engineering College, Hsinchu, Taiwan. He was a teaching assistant from 1989 to 1992 and from 1992 to 1993 a research associate in the School of Computer and Information Science, Syracuse University. From 1993 to 1997 he was an Associate Professor in the Department of Electronic Engineering at Hua Fan College of Humanities and Technology, Taipei Hsien, Taiwan. From 1997 to 2004 he was with the Department of Computer Science and Information Engineering at National Chi Nan University, Nantou, Taiwan. He was promoted to Full Professor in 1998. From June to October 2001 he was a visiting scholar in the Department of Electrical Engineering at University of Hawaii at Manoa, HI, and from September 2002 to January 2004 he was the SUPRIA visiting research scholar in the Department of Electrical Engineering and Computer Science and CASE center at Syracuse University, NY. He is now with the Graduate Institute of Communication Engineering at National Taipei University, Taipei, Taiwan. His research interests are in wireless networks, security, and error-control coding. Dr. Han is a winner of 1994 Syracuse University Doctoral Prize. Pramod K. Varshney was born in Allahabad, India on July 1, 1952. He received the B.S. degree in electrical engineering and computer science (with highest honors), and the M.S. and Ph.D. degrees in electrical engineering from the University of Illinois at Urbana-Champaign in 1972, 1974, and 1976 respectively. Since 1976 he has been with Syracuse University, Syracuse, NY where he is currently a Professor of Electrical Engineering and Computer Science and the Research Director of the New York State Center for Advanced Technology in Computer Applications and Software Engineering. His current research interests are in distributed sensor networks and data fusion, detection and estimation theory, wireless communications, intelligent systems, signal and image processing, and remote sensing he has published extensively. He is the author of Distributed Detection and Data Fusion, published by Springer-Verlag in 1997 and has co-edited two other books. Dr. Varshney is a member of Tau Beta Pi and is the recipient of the 1981 ASEE Dow Outstanding Young Faculty Award. He was elected to the grade of Fellow of the IEEE in 1997 for his contributions in the area of distributed detection and data fusion. In 2000, he received the Third Millennium Medal from the IEEE and Chancellor's Citation for exceptional academic achievement at Syracuse University. He serves as a distinguished lecturer for the AES society of the IEEE. He is on the editorial board Information Fusion. He was the President of International Society of Information Fusion during 2001.  相似文献   

12.
Accessing information through wireless devices is becoming more and more popular. When the size of the accessed information is large, a great amount of access latency is incurred while a mobile user (MU) migrates across cells. This paper investigates this problem and proposes an effective way of delivering such data to the MU in ubiquitous computing systems. A cell-encoding scheme is proposed for the support of this efficient data delivery. The method is carefully evaluated on its feasibility and efficiency. Chao-Chun Chen received his Ph.D. degree in the Department of Computer Science and Information Engineering at the National Cheng-Kung University, Taiwan, in 2004. Currently, he is an assistant professor of the Department of Information Management, Shih-Chien University Kaohsung Campus, Taiwan. His research interests include mobile/wireless data management, sensor networks, spatio-temporal databases, and web information retrieval. Chiang Lee received the B.S. degree from the National Cheng-Kung University, Taiwan, in 1980 and the M.E. and Ph.D. degrees in electrical engineering from the University of Florida, Gainesville, Florida, in 1986 and 1989, respectively. He joined IBM Mid-Hudson Laboratories, Kingston, NY in 1989 and participated in a project working on the design and performance analysis of a parallel and distributed database system. He joined the faculty of National Cheng-Kung University in 1990 and is currently a professor of the Department of Computer Science and Information Engineering of the university. His research interests are in the areas of mobile computing, sensor networks, and database systems. He has many papers published in major database journals and conferences, and has been invited as an author of a chapter for several technical books. Dr. Lee also served as a Steering Committee member of the DASFAA International Conference from 1996 to 1998, and served on organizing and program committee for several major international conferences. Lien-Fa Lin received his M.E. degree in the Department of Computer Science and Engineering at the Yuan Ze University, Taiwan, in 1993. Currently, he is a Ph.D. student of the Department of Computer Science and Information Engineering at the National Cheng-Kung University, Taiwan. His research interests include mobile/wireless data management, spatio-temporal databases, and web information retrieval.  相似文献   

13.
In this paper, we propose an OSA-based development environment for interworking WLAN and 3G cellular networks. The main goal of our work is to establish and create an environment that can serve as a demonstration of a working network for OSA-based application developers while featuring mobile services over the interworked LAN and 3G cellular networks. The proposed simulating environment has (i) a location update scheme that is used to obtain mobile users' locations and status information over the interworked WLAN and cellular networks, (ii) an instant message gateway (IMG) simulator that is developed to send and receive generic messages over the interworked WLAN and cellular networks, and (iii) a mapping of Parlay APIs onto SIP signaling messages for multiparty call applications over the interworked WLAN and cellular networks. An illustrated OSA-based application that utilizes the corresponding system functions and modules is developed and verified using the proposed simulating environment. Chung-Ming Huang received the B.S. degree in Electrical Engineering from National Taiwan University on 1984/6, and the M.S. and Ph.D. degrees in Computer and Information Science from The Ohio State University on 1987/12 and 1991/6 respectively. He is currently a professor in Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan, R.O.C. He is the director of The Promotion Center for Network Applications and Services, Innovative Communication Education Project, Ministry of Education, Taiwan, R.O.C. His research interests include broadband Internet and applications, wireless and mobile network protocols, ubiquitous computing and communications, and multimedia streaming. Tz-Heng Hsu received the B.S. degree from Department of Computer Science and Information Engineering, Feng Chia University on 1996/6, and the M.S. degree and Ph.D from Department of Computer Science and Information Engineering, National Cheng Kung University on 1998/7 and 2005/7, Taiwan, R.O.C. He is currently a assistant professor in Department of Computer Science and Information Engineering, Southern Taiwan University of Technology. His research interests are wireless and mobile network protocols, applications over interworked WLAN and cellular networks and communications, and multimedia streaming. Chih-Wen Chao received the B.S. degree from Department of Engineering Science, National Cheng Kung University on 2003/6, and the M.S. degree from Department of Computer Science and Information Engineering, National Cheng Kung University on 2005/7, Taiwan, R.O.C. His research interests are OSA-based applications and distributed multimedia systems.  相似文献   

14.
This paper presents the idea of managing the comprising computations of an application performed by an embedded networked system. An efficient algorithm for exploiting the timing slack of building blocks of the application is proposed. The slack of blocks can be utilized by replacing them with slower but cheaper, i.e. better, modules and by assigning the computations to the proper resources. Thus, our approach manages the comprising computations and system resources and can indirectly assist the realtime scheduling of computations on system resources. This is performed without compromising the timing constraints of the application and can lead to significant improvements in power dissipation, computation accuracy or other metrics of the application domain. Our algorithm is well-suited for arbitrary tree computations. Moreover, it delivers solutions that are desirably close to the optimal solution. Experimental results for a number of object tracking applications implemented in an networked system with embedded computation resources, exhibit a significant amount of slack utilization. Soheil Ghiasi received his B.S. from Sharif University of Technology, Tehran, Iran in 1998, and his M.S. and Ph.D. in Computer Science from the University of California, Los Angeles in 2002 and 2004, respectively. Currently, he is an assistant professor in the department of electrical and computer engineering at the University of California, Davis. His research interests include different aspects of Embedded and Reconfigurable system design. Elaheh Bozorgzadeh received the B.S. degree in Electrical Engineering from Sharif University of Technology, Iran in 1998, M.S. degree in Computer Engineering from Northwestern University in 2000, and Ph.D. degree in Computer Science from the University of California, Los Angeles, in 2003. She is currently as assistant professor in the Department of Computer Science at the University of California, Irvine. Her research interest includes VLSI CAD, design automation for embedded systems, and reconfigurable computing. She is a member of ACM and IEEE. Karlene Nguyen received her B.S. and M.S. from University of California, Los Angeles in 2001 and 2003, respectively. She has been working with Prof. Majid Sarrafzadeh for her M.S. degree. Her research interests include embedded hardware and software design. Majid Sarrafzadeh received his B.S., M.S. and Ph.D. in 1982, 1984, and 1987 respectively from the University of Illinois at Urbana-Champaign in Electrical and Computer Engineering. He joined Northwestern University as an Assistant Professor in 1987. In 2000, he joined the Computer Science Department at University of California at Los Angeles (UCLA). His recent research interests lie in the area of Embedded and Reconfigurable Computing, VLSI CAD, and design and analysis of algorithms. Dr. Sarrafzadeh is a Fellow of IEEE for his contribution to “Theory and Practice of VLSI Design.” He received an NSF Engineering Initiation award, two distinguished paper awards in ICCAD, and the best paper award in DAC. He has served on the technical program committee of numerous conferences in the area of VLSI Design and CAD, including ICCAD, DAC, EDAC, ISPD, FPGA, and DesignCon. He has served as committee chairs of a number of these conferences. He is on the executive committee/steering committee of several conferences such as ICCAD, ISPD, and ISQED. He is the program committee chair of ICCAD 2004. Professor Sarrafzadeh has published approximately 250 papers, is a co-editor of the book “Algorithmic Aspects of VLSI Layout” (1994 by World Scientific), and co-author of the book “An Introduction to VLSI Physical Design” (1996 by McGraw Hill). Dr. Sarrafzadeh is an Associate Editor of ACM Transaction on Design Automation (TODAES) and an Associate Editor of IEEE Transactions on Computer-Aided Design (TCAD) and ACM Transactions on design Automation (TODAES). Dr. Sarrafzadeh has collaborated with many industries in the past fifteen years including IBM, Motorola, and many CAD industries. He is the architect of the physical design subsystem of Monterey Design Systems main product. He is a co-founder of Hier Design, Inc.  相似文献   

15.
Maximizing Lifetime for Data Aggregation in Wireless Sensor Networks   总被引:3,自引:0,他引:3  
This paper studies energy efficient routing for data aggregation in wireless sensor networks. Our goal is to maximize the lifetime of the network, given the energy constraint on each sensor node. Using linear programming (LP) formulation, we model this problem as a multicommodity flow problem, where a commodity represents the data generated from a sensor node and delivered to a base station. A fast approximate algorithm is presented, which is able to compute (1−ε)-approximation to the optimal lifetime for any ε > 0. Then along this baseline, we further study several advanced topics. First, we design an algorithm, which utilizes the unique characteristic of data aggregation, and is proved to reduce the running time of the fastest existing algorithm by a factor of K, K being the number of commodities. Second, we extend our algorithm to accommodate the same problem in the setting of multiple base stations, and study its impact on network lifetime improvement. All algorithms are evaluated through both solid theoretical analysis and extensive simulation results. Yuan Xue received her B.S. in Computer Science from Harbin Institute of Technology, China in 1994 and her M.S. and Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign in 2002, and 2005. Currently she is an assistant professor at the Department of Electrical Engineering and Computer Science of Vanderbilt University. Her research interests include wireless and sensor networks, mobile systems, and network security. Yi Cui received his B.S. and M.S. degrees in 1997 and 1999, from Department of Computer Science, Tsinghua University, China, and his Ph.D. degree in 2005 from the Department of Computer Science, University of Illinois at Urbana-Champaign. Since then, he has been with the Department of Electrical Engineering and Computer Science at Vanderbilt University, where he is currently an assistant professor. His research interests include overlay network, peer-to-peer system, multimedia system, and wireless sensor network. Klara Nahrstedt (M ' 94) received her A.B., M.Sc degrees in mathematics from the Humboldt University, Berlin, Germany, and Ph.D in computer science from the University of Pennsylvania. She is an associate professor at the University of Illinois at Urbana-Champaign, Computer Science Department where she does research on Quality of Service(QoS)-aware systems with emphasis on end-to-end resource management, routing and middleware issues for distributed multimedia systems. She is the coauthor of the widely used multimedia book ‘Multimedia:Computing, Communications and Applications’ published by Prentice Hall, and the recipient of the Early NSF Career Award, the Junior Xerox Award and the IEEE Communication Society Leonard Abraham Award for Research Achievements, and the Ralph and Catherine Fisher Professorship Chair. Since June 2001 she serves as the editor-in-chief of the ACM/Springer Multimedia System Journal. An erratum to this article is available at .  相似文献   

16.
In this paper we present PEAS, a randomized energy-conservation protocol that seeks to build resilient sensor networks in the presence of frequent, unexpected node failures. PEAS extends the network lifetime by maintaining a necessary set of working nodes and turning off redundant ones, which wake up after randomized sleeping times and replace failed ones when needed. The fully localized operations of PEAS are based on each individual node's observation of its local environment but do not require per neighbor state at any node; this allows PEAS to scale to very dense node deployment. PEAS is highly robust against node failures due to its simple operations and randomized design; it also ensures asymptotic connectivity. Our simulations and analysis show that PEAS can maintain an adequate working node density in presence of as high as 38% node failures, and a roughly constant overhead of less than 1% of the total energy consumption under various deployment densities. It extends a sensor network's functioning time in linear proportional to the deployed sensor population. Fan Ye received his B.E. in Automatic Control in 1996 and M.S. in Computer Science in 1999, both from Tsinghua University, Beijing, China. He received his Ph.D. in Computer Science in 2004 from UCLA. He is currently with IBM Research. His research interests are in wireless networks, sensor networks and security. Honghai Zhang received his BS in Computer Science in 1998 from University of Science and Technology of China. He received his MS and Ph.D. in Computer Science from University of Illinois at Urbana-Champaign. He is currently with the Wireless Advanced Technology Lab of Lucent Technologies. His research interests are wireless networks, WiMAX, and VoIP over wireless networks. Songwu Lu received both his M.S. and Ph.D. from University of Illinois at Urbana-Champaign. He is currently an associate professor at UCLA Computer Science. He received NSF CAREER award in 2001. His research interests include wireless networking, mobile computing, wireless security, and computer networks. Lixia Zhang received her Ph.D in computer science from the Massachusetts Institute of Technology. She was a member of the research staff at the Xerox Palo Alto Research Center before joining the faculty of UCLA’s Computer Science Department in 1995. In the past she has served on the Internet Architecture Board, Co-Chair of IEEE Communication Society Internet Technical Committee, the editorial board for the IEEE/ACM Transactions on Networking, and technical program committees for many networking-related conferences including SIGCOMM and INFOCOM. Zhang is currently serving as the vice chair of ACM SIGCOMM. Jennifer C. Hou received the Ph.D. degree in Electrical Engineering and Computer Science from The University of Michigan, Ann Arbor in 1993 and is currently a professor in the Department of Computer Science at University of Illinois at Urbana Champaign (UIUC). Prior to joining UIUC, she has taught at Ohio State University and University of Wisconsin - Madison. Dr. Hou has worked in the the areas of network modeling and simualtion, wireless-enabled software infrastructure for assisted living, and capacity optimization in wireless networks. She was a recipient of an ACM Recognition of Service, a Cisco University Research Award, a Lumley Research Award from Ohio State University, and a NSF CAREER award. *A Shorter version of this paper appeared in ICDCS 2003.  相似文献   

17.
Rapidly acquiring the code phase of the spreading sequence in an ultra-wideband system is a very difficult problem. In this paper, we present a new iterative algorithm and its hardware architecture in detail. Our algorithm is based on running iterative message passing algorithms on a standard graphical model augmented with multiple redundant models. Simulation results show that our new algorithm operates at lower signal to noise ratio than earlier works using iterative message passing algorithms. We also demonstrate an efficient hardware architecture for implementing the new algorithm. Specifically, the redundant models can be combined together so that substantial memory usage can be reduced. Our prototype achieves the cost-speed product unachievable by traditional approaches. This work was supported in part by the Army Research Office DAAD19-01-1-0477 and the National Science Foundation CCF-0428940. On Wa Yeung received the B. Eng. degree in Electronic Engineering from the Chinese University of Hong Kong, Hong Kong in 1994 and MSEE from the University of Southern California (USC) in 1996. In 1997–2003, he was a hardware engineer in Hughes Network Systems, San Diego, CA, designing hardware platforms for fixed wireless and satellite terminals. He is currently working towards the Ph.D. degree in EE at USC. His research interests are in the areas of iterative detection algorithms and their hardware implementation. Keith M. Chugg (S'88-M'95) received the B.S. degree (high distinction) in Engineering from Harvey Mudd College, Claremont, CA in 1989 and the M.S. and Ph.D. degrees in Electrical Engineering (EE) from the University of Southern California (USC), Los Angeles, CA in 1990 and 1995, respectively. During the 1995–1996 academic year he was an Assistant Professor with the Electrical and Computer Engineering Dept., The University of Arizona, Tucson, AZ. In 1996 he joined the EE Dept. at USC in 1996 where he is currently an Associate Professor. His research interests are in the general areas of signaling, detection, and estimation for digital communication and data storage systems. He is also interested in architectures for efficient implementation of the resulting algorithms. Along with his former Ph.D. students, A. Anastasopoulos and X. Chen, he is coauthor of the book Iterative Detection: Adaptivity, Complexity Reduction, and Applications published by Kluwer Academic Press. He is a co-founder of TrellisWare Technologies, LLC, where he is Chief Scientist. He has served as an associate editor for the IEEE Transactions on Communications and was Program Co-Chair for the Communication Theory Symposium at Globecom 2002. He received the Fred W. Ellersick award for the best unclassified paper at MILCOM 2003.  相似文献   

18.
Auto rate adaptation mechanisms have been proposed to improve the throughput in wireless local area networks with IEEE 802.11a/b/g standards that can support multiple data rate at the physical layer. However, even with the capability of transmitting multi-packets with multi-rate IEEE 802.11 PHY, a mobile host near the fringe of the Access-Point's (AP's) transmission range still needs to adopt a low-level modulation to cope with the lower signal-to-noise ratio (SNR), Thus, it can not obtain a data rate as high as that of a host near AP in most cases. According to the characteristics of modulation schemes, the highest data rate between a pair of mobile hosts will be inversely proportional with the transmission distance. Considering these factors, we here demonstrate a Relay-Based Adaptive Auto Rate (RAAR) protocol that can find a suitable relay node for data transmission between transmitter and receiver, and can dynamically adjust its modulation scheme to achieve the maximal throughput of a node according to the transmission distance and the channel condition. The basic concept is that the best modulation schemes are adaptively used by a wireless station to transmit an uplink data frame, according to the path loss condition between the station itself and a relay node, and that between the relay node and AP, thus delivering data at a higher overall data rate. Evaluation results show that this scheme provides significant throughput improvement for nodes located at the fringe of the AP's transmission range, thus remarkably improving overall system performance. Jain-Shing Liu was born in Taipei, Taiwan, in 1970. He received the Ph.D. degree in Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. He is currently with the faculty of the Department of Computer Science and Information Management, Providence University, Taichung, Taiwan 433, ROC. His research interests include wireless communication protocol design, performance analysis and modeling, personal communication networks, and distributed simulation. Dr. Liu is a member of IEEE and IEICE. Chunhung Richard Lin was born in Kaohsiung, Taiwan. He received the B.S. and M.S. degrees from the Department of Computer Science and Information Engineering, National Taiwan University, in 1987 and 1989, respectively, and the Ph.D. degree from Computer Science Department, University of California, Los Angeles (UCLA), in 1996. Dr. Lin joined National Chung Cheng University in Taiwan in 1996. Since August 2000, he has been with the Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan. His research interests include the design and control of personal communication networks, protocol design and implementation for differentiated/integrated services in mobile wireless networks, mobile Internet, distributed simulation, and embedded operating system design and implementation. His email address is: lin@cse.nsysu.edu.tw. Dr. Lin is an ACM member. He received the 2001 Junior Professor Research Award from National Sun Yat-Sen University and the 2000 Investigative Research Award from the Pan Wen Yuan Foundation, Taiwan, ROC.  相似文献   

19.
Traditional cellular networks provide a centralized wireless networking paradigm within the wireless domain with the help of fixed infrastructure nodes such as Base Stations (BSs). On the other hand, Ad hoc wireless networks provide a fully distributed wireless networking scheme with no dependency on fixed infrastructure nodes. Recent studies show that the use of multihop wireless relaying in the presence of infrastructure based nodes improves system capacity of wireless networks. In this paper, we consider three recent wireless network architectures that combine the multihop relaying with infrastructure support – namely Integrated Cellular and Ad hoc Relaying (iCAR) system, Hybrid Wireless Network (HWN) architecture, and Multihop Cellular Networks (MCNs), for a detailed qualitative and quantitative performance evaluation. MCNs use multihop relaying by the Mobile Stations (MSs) controlled by the BS. iCAR uses fixed Ad hoc Relay Stations (ARSs) placed at the boundaries to relay excess traffic from a hot cell to cooler neighbor cells. HWN dynamically switches its mode of operation between a centralized Cellular mode and a distributed Ad hoc mode based on the throughput achieved. An interesting observation derived from these studies is that, none of these architectures is superior to the rest, rather each one performs better in certain conditions. MCN is found to be performing better than the other two architectures in terms of throughput, under normal traffic conditions. At very high node densities, the variable power control employed in HWN architecture is found to be having a superior impact on the throughput. The mobility of relay stations significantly influences the call dropping probability and control overhead of the system and hence at high mobility iCAR which uses fixed ARSs is found to be performing better. This work was supported by Infosys Technologies Ltd., Bangalore, India and the Department of Science and Technology, New Delhi, India. B. S. Manoj received his Ph.D degree in Computer Science and Engineering from the Indian Institute of Technology, Madras, India, in July 2004. He has worked as a Senior Engineer with Banyan Networks Pvt. Ltd., Chennai, India from 1998 to 2000 where his primary responsibility included design and development of protocols for real-time traffic support in data networks. He had been an Infosys doctoral student in the Department of Computer Science and Engineering at the Indian Institute of Technology-Madras, India. He is a recipient of the Indian Science Congress Association Young Scientist Award for the Year 2003. Since the beginning of 2005, he has been a post doctoral researcher in the Department of Electrical and Computer Engineering, University of California, San Diego. His current research interests include ad hoc wireless networks, next generation wireless architectures, and wireless sensor networks. K. Jayanth Kumar obtained his B.Tech degree in Computer Science and Engineering in 2002 from the Indian Institute of Technology, Madras, India. He is currently working towards the Ph.D degree in the department of Computer Science at the University of California, Berkeley. Christo Frank D obtained his B.Tech degree in Computer Science and Engineering in 2002 from the Indian Institute of Technology, Madras, India. He is currently working towards the Ph.D. degree in the department of Computer Science at the University of Illinois at Urbana-Champaign. His current research interests include wireless networks, distributed systems, and operating systems. C. Siva Ram Murthy received the B.Tech. degree in Electronics and Communications Engineering from Regional Engineering College (now National Institute of Technology), Warangal, India, in 1982, the M.Tech. degree in Computer Engineering from the Indian Institute of Technology (IIT), Kharagpur, India, in 1984, and the Ph.D. degree in Computer Science from the Indian Institute of Science, Bangalore, India, in 1988. He joined the Department of Computer Science and Engineering, IIT, Madras, as a Lecturer in September 1988, and became an Assistant Professor in August 1989 and an Associate Professor in May 1995. He has been a Professor with the same department since September 2000. He has held visiting positions at the German National Research Centre for Information Technology (GMD), Bonn, Germany, the University of Stuttgart, Germany, the University of Freiburg, Germany, the Swiss Federal Institute of Technology (EPFL), Switzerland, and the University of Washington, Seattle, USA. He has to his credit over 120 research papers in international journals and over 100 international conference publications. He is the co-author of the textbooks Parallel Computers: Architecture and Programming, (Prentice-Hall of India, New Delhi, India), New Parallel Algorithms for Direct Solution of Linear Equations, (John Wiley & Sons, Inc., New York, USA), Resource Management in Real-time Systems and Networks, (MIT Press, Cambridge, Massachusetts, USA), WDM Optical Networks: Concepts, Design, and Algorithms, (Prentice Hall, Upper Saddle River, New Jersey, USA), and Ad Hoc Wireless Networks: Architectures and Protocols, (Prentice Hall, Upper Saddle River, New Jersey, USA). His research interests include parallel and distributed computing, real-time systems, lightwave networks, and wireless networks. Dr.Murthy is a recipient of the Sheshgiri Kaikini Medal for the Best Ph.D. Thesis from the Indian Institute of Science, the Indian National Science Academy (INSA) Medal for Young Scientists, and Dr. Vikram Sarabhai Research Award for his scientific contributions and achievements in the fields of Electronics, Informatics, Telematics & Automation. He is a co-recipient of Best Paper Awards from the 1st Inter Research Institute Student Seminar (IRISS) in Computer Science, the 5th IEEE International Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), and the 6th and 11th International Conference on High Performance Computing (HiPC). He is a Fellow of the Indian National Academy of Engineering.  相似文献   

20.
The traffic-adaptive medium access protocol (TRAMA) is introduced for energy-efficient collision-free channel access in wireless sensor networks. TRAMA reduces energy consumption by ensuring that unicast and broadcast transmissions incur no collisions, and by allowing nodes to assume a low-power, idle state whenever they are not transmitting or receiving. TRAMA assumes that time is slotted and uses a distributed election scheme based on information about traffic at each node to determine which node can transmit at a particular time slot. Using traffic information, TRAMA avoids assigning time slots to nodes with no traffic to send, and also allows nodes to determine when they can switch off to idle mode and not listen to the channel. TRAMA is shown to be fair and correct, in that no idle node is an intended receiver and no receiver suffers collisions. An analytical model to quantify the performance of TRAMA is presented and the results are verified by simulation. The performance of TRAMA is evaluated through extensive simulations using both synthetic- as well as sensor-network scenarios. The results indicate that TRAMA outperforms contention-based protocols (CSMA, 802.11 and S-MAC) and also static scheduled-access protocols (NAMA) with significant energy savings. This work was supported in part by the NSF-NGI grant number ANI-9813724 and by the Jack Baskin Chair of Computer Engineering at UCSC. Venkatesh Rajendran received the B.E. degree in Electronics and Communication Engineering from the Anna University in 2001, and M.S. in Computer Engineering from the University of California, Santa Cruz (UCSC) in 2003. He is currently working towards his Ph.D at UCSC. He is a graduate student researcher at the Inter-networking Research Lab (INRG). His research interests are in wireless communication system design, energy-aware media access control protocols for wireless ad hoc networks, smart sensor networks, reliable multi-casting, wireless multi-carrier communications, digital signal processing, adaptive modulation, and smart antenna systems. Katia Obraczka received the B.S. and M.S. degrees in electrical and computer engineering from the Federal University of Rio de Janeiro, Brazil, and the M.S. and Ph.D. degrees in computer science from the University of Southern California (USC). She is an Assistant Professor of Computer Engineering at the University of California, Santa Cruz. Before joining UCSC, she held a research scientist position at USC's Information Sciences Institute and a research faculty appointment at USC's Computer Science Department. Her research interests include computer networks, more specifically, network protocol design and evaluation in wire-line as well as wireless (in particular, multi-hop ad hoc) networks, distributed systems, and Internet information systems. J.J. Garcia-Luna-Aceves received the M.S. and Ph.D. degrees in electrical engineering from the University of Hawaii, Honolulu, HI, in 1980 and 1983, respectively. He is the Baskin Professor of Computer Engineering at the University of California, Santa Cruz (UCSC). Dr. Garcia-Luna-Aceves directs the Computer Communication Research Group (CCRG), which is part of the Information Technologies Institute of the Baskin School of Engineering at UCSC. He has been a Visiting Professor at Sun Laboratories and a consultant on protocol design for Nokia. Prior to joining UCSC in 1993, he was a Center Director at SRI International (SRI) in Menlo Park, California. Dr. Garcia-Luna-Aceves has published a book and more than 250 refereed papers and three U.S patents, and has directed more than 18 Ph.D. theses at UCSC. He has been Program Co-Chair of ACM MobiHoc 2002 and ACM Mobicom 2000; Chair of the ACM SIG Multimedia; General Chair of ACM Multimedia '93 and ACM SIGCOMM '88; and Program Chair of IEEE MULTIMEDIA '92, ACM SIGCOMM '87, and ACM SIGCOMM '86. He has served in the IEEE Internet Technology Award Committee, the IEEE Richard W. Hamming Medal Committee, and the National Research Council Panel on Digitization and Communications Science of the Army Research Laboratory Technical Assessment Board. HE has been on the editorial boards of the IEEE/ACM Transactions on Networking, the Multimedia Systems Journal, and the Journal of High Speed Networks. He received the SRI International Exceptional-Achievement Award in 1985 and 1989, and is a senior member of the IEEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号