首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
A synergetic effect of molecular weight (Mn) and fluorine (F) on the performance of all‐polymer solar cells (all‐PSCs) is comprehensively investigated by tuning the Mn of the acceptor polymer poly((N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl)‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) and the F content of donor polymer poly(2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐dyl‐alt‐thiophene‐2,5‐diyl). Both Mn and F variations strongly influence the charge transport properties and morphology of the blend films, which have a significant impact on the photovoltaic performance of all‐PSCs. In particular, the effectiveness of high Mn in increasing power conversion efficiency (PCE) can be greatly improved by the devices based on optimum F content, reaching a PCE of 7.31% from the best all‐PSC combination. These findings enable us to further understand the working principles of all‐PSCs with a view on achieving even higher power conversion efficiency in the future.  相似文献   

2.
Recently, the influence of molecular weight (Mn) on the performance of polymer solar cells (PSCs) is widely investigated. However, the dependence of optimal thickness of active layer for PSCs on Mn is not reported yet, which is vital to the solution printing technology. In this work, the effect of Mn on the efficiency and especially optimal thickness of the active layer for PBTIBDTT‐S‐based PSCs is systematically studied. The device efficiency improves significantly as the Mn increases from 12 to 38 kDa, and a remarkable efficiency of 10.1% is achieved, which is among the top efficiencies of wide‐bandgap polymer:fullerene PSCs. Furthermore, the optimal thickness of the active layer is also greatly increased from 62 to 210 nm with increased Mn. Therefore, a device employing a thick (>200 nm) active layer with power conversion efficiency exceeding 10% is achieved by manipulating Mn. This exciting result is attributed to both the improved crystallinity, thus hole mobility, and preferable polymer orientation, thus morphology of active layer. These findings, for the first time, highlight the significant impact of Mn on the optimal thickness of active layer for PSCs and provide a facile way to further improve the performance of PSCs employing a thick active layer.  相似文献   

3.
The photovoltaic performance and optoelectronic properties of a donor–acceptor copolymer are reported based on indacenodithienothiophene (IDTT) and 2,3‐bis(3‐(octyloxy)phenyl)quinoxaline moieties (PIDTTQ) as a function of the number‐average molecular weight (Mn). Current–voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo‐CELIV) reveal improved charge generation and charge transport properties in these high band gap systems with increasing Mn, while polymers with low molecular weight suffer from diminished charge carrier extraction because of low mobility–lifetime (μτ) product. By combining Fourier‐transform photocurrent spectroscopy (FTPS) with electroluminscence spectroscopy, it is demonstrate that increasing Mn reduces the nonradiative recombination losses. Solar cells based on PIDTTQ with Mn = 58 kD feature a power conversion efficiency of 6.0% and a charge carrier mobility of 2.1 × 10?4 cm2 V?1 s?1 when doctor bladed in air, without the need for thermal treatment. This study exhibits the strong correlations between polymer fractionation and its optoelectronics characteristics, which informs the polymer design rules toward highly efficient organic solar cells.  相似文献   

4.
The time‐of‐flight method has been used to study the effect of P3HT molecular weight (Mn = 13–121 kDa) on charge mobility in pristine and PCBM blend films using highly regioregular P3HT. Hole mobility was observed to remain constant at 10?4 cm2V?1s?1 as molecular weight was increased from 13–18 kDa, but then decreased by one order of magnitude as molecular weight was further increased from 34–121 kDa. The decrease in charge mobility observed in blend films is accompanied by a change in surface morphology, and leads to a decrease in the performance of photovoltaic devices made from these blend films.  相似文献   

5.
In the field of non-fullerene organic solar cells (OSCs), compared to the rapid development of non-fullerene acceptors, the progress of high-performance donor polymers is relatively slow. The property and performance of donor polymers in OSCs are often sensitive to the molecular weight of the polymers. In this study, a chlorinated donor polymer named D18-Cl is reported, which can achieve high performance with a wide range of polymer molecular weight. The devices based on D18-Cl show a higher open-circuit voltage (VOC) due to the slightly deeper energy levels and an outstanding short-circuit current density (JSC) owing to the appropriate long periods of blend films and less ([6,6]-phenyl-C71-butyric acid methyl ester) (PC71BM) in mixed domains, leading to the higher efficiency of 17.97% than those of the D18-based devices (17.21%). Meanwhile, D18-Cl can achieve high efficiencies (17.30–17.97%) when its number-averaged molecular weight (Mn) is ranged from 45 to 72 kDa. In contrast, the D18-based devices only exhibit relatively high efficiencies in a narrow Mn range of ≈70 kDa. Such property and performance make D18-Cl a promising donor polymer for scale-up and low-cost production.  相似文献   

6.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

7.
Increasing the molecular weight of the low‐bandgap semiconducting copolymer, poly[(4,4‐didoecyldithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl], Si‐PDTBT, from 9 kDa to 38 kDa improves both photoresponsivity and charge transport properties dramatically. The photocurrent measured under steady state conditions is 20 times larger in the higher molecular weight polymer (HMn Si‐PDTBT). Different decays of polarization memory in transient photoinduced spectroscopy measurements are consistent with more mobile photoexcitations in HMn Si‐PDTBT relative to the lower molecular weight counterpart (LMn Si‐PDTBT). Analysis of the current‐voltage characteristics of field effect transistors reveals an increase in the mobility by a factor of 700 for HMn Si‐PDTBT. Near edge X‐ray absorption fine structure (NEXAFS) spectroscopy and grazing incidence small angle X‐ray scattering (GISAXS) measurements demonstrate that LMn Si‐PDTBT forms a disordered morphology throughout the depth of the film, whereas HMn Si‐PDTBT exhibits pronounced π‐π stacking in an edge‐on configuration near the substrate interface. Increased interchain overlap between polymers in the edge‐on configuration in HMn Si‐PDTBT results in the higher carrier mobility. The improved optical response, transport mobility, and interfacial ordering highlight the subtle role that the degree of polymerization plays on the optoelectronic properties of conjugated polymer based organic semiconductors.  相似文献   

8.
For polymer solar cells (PSCs) with conventional configuration, the vertical composition profile of donor:acceptor in active layer is detrimental for charge carrier transporting/collection and leads to decreased device performance. A cross‐linkable donor polymer as the underlying morphology‐inducing layer (MIL) to tune the vertical composition distribution of donor:acceptor in the active layer for improved PSC device performance is reported. With poly(thieno[3,4‐b]‐thiophene/benzodithiophene):[6,6]‐phenyl C71‐butyric acid methyl ester (PTB7:PC71BM) as the active layer, the MIL material, PTB7‐TV , is developed by attaching cross‐linkable vinyl groups to the side chain of PTB7. PSC device with PTB7‐TV layer exhibits a power conversion efficiency (PCE) of 8.55% and short‐circuit current density (JSC) of 15.75 mA cm?2, in comparison to PCE of 7.41% and JSC of 13.73 mA cm?2 of the controlled device. The enhanced device performance is ascribed to the much improved vertical composition profile and reduced phase separation domain size in the active layer. These results demonstrate that cross‐linked MIL is an effective strategy to improve photovoltaic performance of conventional PSC devices.  相似文献   

9.
The surface structure of uniaxially aligned poly(9,9‐bis(ethylhexyl)‐fluorene‐2,7‐diyl) films on rubbed polyimide has been studied as a function of molecular weight (Mn = 3–150 kg mol–1, number‐average molecular weight) using polarized microscopy, atomic force microscopy (AFM), X‐ray reflectivity, and grazing‐incidence X‐ray diffraction. At the threshold Mn, Mn* = 104 g mol–1, there is a prominent transition in morphology from featureless (Mn < Mn*) to rough (Mn > Mn*), corresponding to the nematic–hexagonal phase transition. The hexagonal phase reveals two coexistent crystallite types in the whole film and at least one crystallite type has been observed at the surface by AFM. The combined optimization of alignment and surface smoothness is achieved slightly below Mn* while the combined optimization of orientational and local order and moderately smooth surface is achieved slightly above Mn*.  相似文献   

10.
This study has proposed to use a well‐defined oligomer F4TBT4 to replace its analogue polymer as electron acceptor toward tuning the phase separation behavior and enhancing the photovoltaic performance of all‐polymer solar cells. It has been disclosed that the oligomer acceptor favors to construct pure and large‐scale phase separation in the polymer:oligomer blend film in contrast to the polymer:polymer blend film. This gets benefit from the well‐defined structure and short rigid conformation of the oligomer that endows it aggregation capability and avoids possible entanglement with the polymer donor chains. The charge recombination is to some extent suppressed and charge extraction is also improved. Finally, the P3HT:F4TBT4 solar cells not only output a high VOC above 1.2 V, but also achieve a power conversion efficiency of 4.12%, which is two times higher than the P3HT:PFTBT solar cells and is comparable to the P3HT:PCBM solar cells. The strategy of constructing optimum phase separation with oligomer to replace polymer opens up new prospect for the further improvement of the all‐polymer solar cells.  相似文献   

11.
In order to fabricate polymer field‐effect transistors (PFETs) with high electrical stability under bias‐stress, it is crucial to minimize the density of charge trapping sites caused by the disordered regions. Here we report PFETs with excellent electrical stability comparable to that of single‐crystalline organic semiconductors by specifically controlling the molecular weight (MW) of the donor‐acceptor type copolymer semiconductors, poly (didodecylquaterthiophene‐alt‐didodecylbithiazole). We found that MW‐induced thermally structural transition from liquid‐crystalline to semi‐crystalline phases strongly affects the device performance (charge‐carrier mobility and electrical bias‐stability) as well as the nanostructures such as the molecular ordering and the morphological feature. In particular, for the polymer with a MW of 22 kDa, the transfer curves varied little (ΔVth = 3~4 V) during a period of prolonged bias stress (about 50 000 s) under ambient conditions. This enhancement of the electrical bias‐stability can be attributed to highly ordered liquid‐crystalline nanostructure of copolymer semiconductors on dielectric surface via the optimization of molecular weights.  相似文献   

12.
The correlation between morphology and optoelectronic performance in organic thin‐film transistors based on blends of photochromic diarylethenes (DAE) and poly(3‐hexylthiophene) (P3HT) is investigated by varying molecular weight (Mw = 20–100 kDa) and regioregularity of the conjugated polymer as well as the temperature of thermal annealing (rt‐160 °C) in thin films. Semicrystalline architectures of P3HT/DAE blends comprise crystalline domains, ensuring efficient charge transport, and less aggregated regions, where DAEs are located as a result of their spontaneous expulsion from the crystalline domains during the self‐assembly. The best compromise between field‐effect mobility (μ) and switching capabilities is observed in blends containing P3HT with Mw = 50 kDa, exhibiting μ as high as 1 × 10?3 cm2 V?1 s?1 combined with a >50% photoswitching ratio. Higher or lower Mw than 50 kDa are found to be detrimental for field‐effect mobility and to lead to reduced device current switchability. The microstructure of the regioregular P3HT blend is found to be sensitive to the thermal annealing temperature, with an increase in μ and a decrease in current modulation being observed as a response to the light‐stimulus likely due to an increased P3HT‐DAE segregation, partially hindering DAE photoisomerization. The findings demonstrate the paramount importance of fine tuning the structure and morphology of bicomponent films for leveraging the multifunctional nature of optoelectronic devices.  相似文献   

13.
In organic bulk heterojunction solar cells (oBHJ) the blend morphology in combination with the charge transport properties of the individual components controls the extracted photocurrent. The organic field‐effect transistor (OFET) has been proved as a powerful instrument to evaluate the unipolar carrier transport properties in a wide range of cases. In our work we extend the OFET concept to the evaluation of the bipolar transport properties in polymer‐fullerenes blends and propose a method to improve the accuracy of the evaluation. The method is based on capacitance–voltage (C–V) measurements on MOS structures prepared on the same blends and delivers complementary information on the bulk heterojunction to the one obtained with FETs. The relevance for photovoltaic applications is investigated through the correlation between the current–voltage behavior of solar cells and the bipolar mobility for composites with varying polymer molecular weight and processed from different solvents. In particular the transport features of solar cells produced from o‐Xylene (oX), a non chlorinated solvent more suitable to production requirements, have been compared to the one of devices cast from Chlorobenzene (CB) solution. For the P3HT‐PCBM blend a consistent correlation between the mobility and the electrical fill factor and power performance was found. A significant asymmetry in the bipolar carrier mobility, together with low electron mobility dependent on the Mw value, affects the performances of thick o‐Xylene cast devices. In the case of devices processed from Chlorobenzene the slower carrier has higher mobility and the small electrical losses detected are eventually more related to the formation of space‐charge and eventually to surface recombination. This results in an efficient charge collection that is almost thickness independent. We report a dependence of the slow‐carrier type (electrons or holes) and their mobility on the specific combination of molecular weight and solvent. The mobility data and the solar cell performance coherently fit to the prediction of a device model only based on the drift of carriers under the built‐in electric field originated in the donor‐acceptor oBHJ.  相似文献   

14.
The charge transport and microstructural properties of five different molecular weight (MW) batches of the naphthalenediimide‐thiophene copolymer P(NDI2OD‐T2) are investigated. In particular, the field‐effect transistor (FET) performance and thin‐film microstructure of samples with MW varying from Mn = 10 to 41 kDa are studied. Unlike conventional semiconducting polymers such as poly(3‐hexylthiophene) where FET mobility dramatically drops with decreasing molecular weight, the FET mobility of P(NDI2OD‐T2)‐based transistors processed from 1,2‐dichlorobenzene is found to increase with decreasing MW. Using a combination of grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, atomic force microscopy, and resonant soft X‐ray scattering, the increase in FET mobility with decreasing MW is attributed to the pronounced increase in the orientational correlation length (OCL) with decreasing MW. In particular, the OCL is observed to systematically increase from <100 nm for the highest MW samples to ≈1 µm for the lowest MW samples. The improvement in OCL and hence mobility for low MW samples is attributed to the lack of aggregation of low MW chains in solution promoting backbone ordering, with the pre‐aggregation of chains in 1,2‐dichlorobenzene found to suppress longer‐range liquid crystalline order.  相似文献   

15.
Despite the rapid development of nonfullerene acceptors (NFAs), the fundamental understanding on the relationship between NFA molecular architecture, morphology, and device performance is still lacking. Herein, poly[[4,8‐bis[5‐(2‐ethylhexyl)thiophene‐2‐yl]benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]] (PTB7‐Th) is used as the donor polymer to compare an NFA with a 3D architecture (SF‐PDI4) to a well‐studied NFA with a linear acceptor–donor–acceptor (A–D–A) architecture (ITIC). The data suggest that the NFA ITIC with a linear molecular structure shows a better device performance due to an increase in short‐circuit current ( Jsc) and fill factor (FF) compared to the 3D SF‐PDI4. The charge generation dynamics measured by femtosecond transient absorption spectroscopy (TAS) reveals that the exciton dissociation process in the PTB7‐Th:ITIC films is highly efficient. In addition, the PTB7‐Th:ITIC blend shows a higher electron mobility and lower energetic disorder compared to the PTB7‐Th:SF‐PDI4 blend, leading to higher values of Jsc and FF. The compositional sensitive resonant soft X‐ray scattering (R‐SoXS) results indicate that ITIC molecules form more pure domains with reduced domain spacing, resulting in more efficient charge transport compared with the SF‐PDI4 blend. It is proposed that both the molecular structure and the corresponding morphology of ITIC play a vital role for the good solar cell device performance.  相似文献   

16.
The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron‐donating polymer and an electron‐accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long‐range corrected density functional theory calculations is used to elucidate the molecular‐scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD); (ii) poly[(2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PBT4T‐2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T‐2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′‐bithiophene)‐alt‐(4,7‐bis((2‐decyltetradecyl)thiophen‐2‐yl)‐5,6‐difluoro‐2‐propyl‐2H‐benzo[d][1,2,3]triazole)] (PT2‐FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T‐2OD are replaced with nitrogen atoms carrying a linear C3H7 side‐chain; these polymers are mixed with the phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge‐transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge‐recombination process, and the electron‐transfer features between neighboring PC71BM molecules.  相似文献   

17.
Improved charge generation via fast and effective hole transfer in all‐polymer solar cells (all‐PSCs) with large highest occupied molecular orbital (HOMO) energy offset (ΔEH) is revealed utilizing ultrafast transient absorption (TA) spectroscopy. Blending the same nonfullerene acceptor poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (N2200) with three different donor polymers produces all‐polymer blends with different ΔEH. The selective excitation of N2200 component in blends enables to uncover the hole transfer process from hole polaron‐induced bleaching and absorption signals probed at different wavelength. As the ΔEH is enhanced from 0.14 to 0.37 eV, the hole transfer rate rises more than one order and the hole transfer efficiency increases from 12.9% to 86.8%, in agreement with the trend of internal quantum efficiency in the infrared region where only N2200 has absorption. Additionally, Grazing‐incidence wide‐angle X‐ray scattering measurements indicate that face‐on crystal orientation in both polymer donor and acceptor also plays an important role in facilitating the charge generation via hole transfer in all‐PSCs. Hence, large ΔEH and proper crystal orientation should be considered in material design for efficient hole transfer in N2200‐based heterostructures. These results can provide valuable guidance for fabrication of all‐PSCs to further improve power conversion efficiency.  相似文献   

18.
By the introduction of different building blocks and side‐chains, a series of donor–acceptor type polymer acceptors containing naphthalene diimide have been successfully prepared. The theoretical and experimental results show that the molecular design effectively tunes the energy levels, solubility, and coplanarity of the acceptor polymers. The intermolecular packing, which has been considered as a key factor in the bulk heterojunction morphology, has been adjusted by changing the coplanarity. As a result of improved morphology and fine‐tuned energy levels, a power conversion efficiency of 6.0% has been demonstrated for the optimized devices, which is among the highest‐efficiencies for reported all‐polymer solar cells. The improved device performance may be attributed to the resemble crystallinity of the donor/acceptor polymers, which can lead to the optimal phase separation morphology balancing both charge transfer and transport.  相似文献   

19.
In this paper, a difluoro-monobromo end group is designed and synthesized, which is then used to construct a novel polymer acceptor (named PY2F-T) yielding high-performance all-polymer solar cells with 15.22% efficiency. The fluorination strategy can increase the intramolecular charge transfer and interchain packing of the previous PY-T based acceptor, and significantly improve photon harvesting and charge mobility of the resulting polymer acceptor. In addition, detailed morphology investigations reveal that the PY2F-T-based blend shows smaller domain spacing and higher domain purity, which significantly suppress charge recombination as supported by time-resolved techniques. These polymer properties enable simultaneously enhanced JSC and FF of the PY2F-T-based devices, eventually delivering device efficiencies of over 15%, significantly outperforming that of the devices based on the non-fluorinated PY-T polymer (13%). More importantly, the PY2F-T-based active layers can be processed under ambient conditions and still achieve a 14.37% efficiency. They can also be processed using non-halogenated solvent o-xylene (no additive) and yield a decent performance of 13.05%. This work demonstrates the success of the fluorination strategy in the design of high-performance polymer acceptors, which provide guidelines for developing new all-PSCs with better efficiencies and stabilities for commercial applications.  相似文献   

20.
The influence of polymer entanglement on the self‐assembly, molecular packing structure, and microstructure of low‐Mw (lightly entangled) and high‐Mw (highly entangled) poly (3‐hexylthiophene) (P3HT), and the carrier transport in thin‐film transistors, are investigated. The polymer chains are gradually disentangled in a marginal solvent via ultrasonication of the polymer solution, and demonstrate improved diffusivity of precursor species (coils, aggregates, and microcrystallites), enhanced nucleation and crystallization of P3HT in solution, and self‐assembly of well‐ordered and highly textured fibrils at the solid–liquid interface. In low‐Mw P3HT, reducing chain entanglement enhances interchain and intrachain ordering, but reduces the interconnectivity of ordered domains (tie molecules) due to the presence of short chains, thus deteriorating carrier transport even in the face of improving crystallinity. Reducing chain entanglement in high‐Mw P3HT solutions increases carrier mobility up to ≈20‐fold, by enhancing interchain and intrachain ordering while maintaining a sufficiently large number of tie molecules between ordered domains. These results indicate that charge carrier mobility is strongly governed by the balancing of intrachain and interchain ordering, on the one hand, and interconnectivity of ordered domains, on the other hand. In high‐Mw P3HT, intrachain and interchain ordering appear to be the key bottlenecks to charge transport, whereas in low‐Mw P3HT, the limited interconnectivity of the ordered domains acts as the primary bottleneck to charge transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号