首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The power‐conversion efficiency (PCE) of single‐junction organic solar cells (OSCs) has exceeded 16% thanks to the development of non‐fullerene acceptor materials and morphological optimization of active layer. In addition, interfacial engineering always plays a crucial role in further improving the performance of OSCs based on a well‐established active‐layer system. Doping of graphitic carbon nitride (g‐C3N4) into poly(3,4‐ethylene‐dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for PM6:Y6‐based OSCs is reported, boosting the PCE to almost 16.4%. After being added into the PEDOT:PSS, the g‐C3N4 as a Bronsted base can be protonated, weakening the shield effect of insulating PSS on conductive PEDOT, which enables exposures of more PEDOT chains on the surface of PEDOT:PSS core‐shell structure, and thus increasing the conductivity. Therefore, at the interface between g‐C3N4 doped HTL and PM6:Y6 layer, the charge transport is improved and the charge recombination is suppressed, leading to the increases of fill factor and short‐circuit current density of devices. This work demonstrates that doping g‐C3N4 into PEDOT:PSS is an efficient strategy to increase the conductivity of HTL, resulting in higher OSC performance.  相似文献   

2.
To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.  相似文献   

3.
Although high power conversion efficiencies (PCE) have already been demonstrated in conventional structure polymer solar cells (PSCs), the development of high performance inverted structure polymer solar cells is still lagging behind despite their demonstrated superior stability and feasibility for roll‐to‐roll processing. To address this challenge, a detailed study of solution‐processed, inverted‐structure PSCs based on the blends of a low bandgap polymer, poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐PhanQ) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as the bulk heterojunction (BHJ) layer is carried out. Comprehensive characterization and optical modeling of the resulting devices is performed to understand the effect of device geometry on photovoltaic performance. Excellent device performance can be achieved by optimizing the optical field distribution and spatial profiles of excitons generation within the active layer in different device configurations. In the inverted structure, because the peak of the excitons generation is located farther away from the electron‐collecting electrode, a higher blending ratio of fullerene is required to provide higher electron mobility in the BHJ for achieving good device performance.  相似文献   

4.
For realizing flexible perovskite solar cells (PSCs), it is important to develop low‐temperature processable interlayer materials with excellent charge transporting properties. Herein, a novel polymeric hole‐transport material based on 1,4‐bis(4‐sulfonatobutoxy)benzene and thiophene moieties (PhNa‐1T) and its application as a hole‐transport layer (HTL) material of high‐performance inverted‐type flexible PSCs are introduced. Compared with the conventionally used poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the incorporation of PhNa‐1T into HTL of the PSC device is demonstrated to be more effective for improving charge extraction from the perovskite absorber to the HTL and suppressing charge recombination in the bulk perovskite and HTL/perovskite interface. As a result, the flexible PSC using PhNa‐1T achieves high photovoltaic performances with an impressive power conversion efficiency of 14.7%. This is, to the best of our knowledge, among the highest performances reported to date for inverted‐type flexible PSCs. Moreover, the PhNa‐1T‐based flexible PSC shows much improved stability under an ambient condition than PEDOT:PSS‐based PSC. It is believed that PhNa‐1T is a promising candidate as an HTL material for high‐performance flexible PSCs.  相似文献   

5.
For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted bulk‐heterojunction organic solar cells (OSCs) with a sol–gel derived V2O5 hole‐extraction‐layer on top of the active organic layer. The V2O5 layers are prepared in ambient air using Vanadium(V)‐oxitriisopropoxide as precursor. Without any post‐annealing or plasma treatment, a high work function of the V2O5 layers is confirmed by both Kelvin probe analysis and ultraviolet photoelectron spectroscopy (UPS). Using UPS and inverse photoelectron spectroscopy (IPES), we show that the electronic structure of the solution processed V2O5 layers is similar to that of thermally evaporated V2O5 layers which have been exposed to ambient air. Optimization of the sol gel process leads to inverted OSCs with solution based V2O5 layers that show power conversion efficiencies similar to that of control devices with V2O5 layers prepared in high‐vacuum.  相似文献   

6.
In this work, the way in which ambient moisture impacts the photovoltaic performance of conventional PCBM and emerging polymer acceptor–based organic solar cells is examined. The device performance of two representative p‐type polymers, PBDB‐T and PTzBI, blended with either PCBM or polymeric acceptor N2200, is systemically investigated. In both cases, all‐polymer photovoltaic devices processed from high‐humidity ambient conditions exhibit significantly enhanced moisture‐tolerance compared to their polymer–PCBM counterparts. The impact of moisture on the blend film morphology and electronic properties of the electron acceptor (N2200 vs PCBM), which results in different recombination kinetics and electron transporting properties, are further compared. The impact of more comprehensive ambient conditions (moisture, oxygen, and thermal stress) on the long‐term stability of the unencapsulated devices is also investigated. All‐polymer solar cells show stable performance for long periods of storage time under ambient conditions. The authors believe that these findings demonstrate that all‐polymer solar cells can achieve high device performance with ambient processing and show excellent long‐term stability against oxygen and moisture, which situate them in an advantageous position for practical large‐scale production of organic solar cells.  相似文献   

7.
Bulk heterojunction (BHJ) processing technology has had an irreplaceable role in the development of organic solar cells (OSCs) in the past decades due to the significant advantages in achieving high‐power conversion efficiency (PCE). However, the difficulty in exploring and regulating morphology makes it inadequate for upscaling large‐area OSCs. In this work, printable high‐performance ternary devices are fabricated by a pseudo‐planar heterojunction (PPHJ) strategy. The fullerene derivative indene‐C60 bisadduct (ICBA) is incorporated into PM6/IT‐4F system to expand the vertical phase separation and facilitate an obvious PPHJ structure. After the addition of ICBA, the IT‐4F enriches on the surface of active layer, while PM6 is accumulated underneath. Furthermore, it increases the crystallinity of PM6, which facilitates exciton dissociation and charge transfer. Accordingly, 1.05 cm2 devices are fabricated by blade‐coating with an enhanced PCE of 14.25% as compared to the BHJ devices (13.73%). The ternary PPHJ strategy provides an effective way to optimize the vertical phase separation of organic semiconductor during scalable printing methods.  相似文献   

8.
Nonfullerene acceptors have recently drawn considerable attention in bulk heterojunction organic solar cells (OSCs). The power conversion efficiency (PCE) over 14% is achieved in single‐junction fullerene‐free OSCs, which has surpassed that of fullerene‐based counterparts. For future commercial applications, however, a high and stable PCE > 15% is required, which entails rational material design and device optimization. In this context, three approaches are generally utilized—the synthesis of novel nonfullerene acceptors and the selection of suitable polymer donors to pair with them, the tandem or multijunction device architecture, and the ternary blend strategy. Compared to the former two methods, the ternary strategy allows to employ the existing photovoltaic materials and the single‐junction device. Therefore, an exploration of nonfullerene acceptor–based ternary blend OSCs (NFTSCs) has shown unprecedented progress since 2016. This review summarizes and classifies the photovoltaic materials utilized in NFTSCs, aiming to not only exhibit the recent development of NFTSCs but also elucidate the correlation among donor/acceptor materials, film morphology, transport dynamics, and device fabrication toward high‐efficiency OSCs. Lastly, the above key advances are highlighted along with the existing issues and insights into the viable path for the further research thrusts are offered.  相似文献   

9.
Two new wide‐bandgap D–A–π copolymer donor materials, PBDT‐2TC and PBDT‐S‐2TC, based on benzodithiophene and asymmetric bithiophene with one carboxylate (2TC) substituent are synthesized by a facile approach for fullerene‐free organic solar cells (OSCs). The combination of one carboxylate‐substituted thiophene with one thiophene bridge in the backbone substantially reduces the steric hindrance, thereby favoring a planar geometry for efficient charge transport and molecular packing. A reasonable highest‐occupied‐molecular‐orbital energy level in relation to that of the acceptor and balanced hole and electron transport are observed for both polymers. This asymmetric structure unit is flexible and versatile, allowing the absorption, energy levels, and morphology of the blend films to be tailored. Fullerene‐free OSCs based on PBDT‐S‐2TC:ITIC achieve a high power conversion efficiency of 10.12%. More impressively, a successful nonhalogen solvent‐processed solar cell with 9.55% efficiency is also achieved, which is one of the highest values for a fullerene‐free OSC processed using an ecofriendly solvent.  相似文献   

10.
Low‐temperature‐processed inverted perovskite solar cells (PVSCs) attract increasing attention because they can be fabricated on both rigid and flexible substrates. For these devices, hole‐transporting layers (HTLs) play an important role in achieving efficient and stable inverted PVSCs by adjusting the anodic work function, hole extraction, and interfacial charge recombination. Here, the use of a low‐temperature (≤150 °C) solution‐processed ultrathin film of poly[(9,9‐dioctyl‐fluorenyl‐2,7‐diyl)‐co‐(4,4′‐(N‐(4‐secbutylphenyl) diphenylamine)] (TFB) is reported as an HTL in one‐step‐processed CH3NH3PbI3 (MAPbI3)‐based inverted PVSCs. The fabricated device exhibits power conversion efficiency (PCE) as high as 20.2% when measured under AM 1.5 G illumination. This PCE makes them one of the MAPbI3‐based inverted PVSCs that have the highest efficiency reported to date. Moreover, this inverted PVSC also shows good stability, which can retain 90% of its original efficiency after 30 days of storage in ambient air.  相似文献   

11.
The synthesis and characterization of copper (I) selenocyanate (CuSeCN) and its application as a solution‐processable hole‐transport layer (HTL) material in transistors, organic light‐emitting diodes, and solar cells are reported. Density‐functional theory calculations combined with X‐ray photoelectron spectroscopy are used to elucidate the electronic band structure, density of states, and microstructure of CuSeCN. Solution‐processed layers are found to be nanocrystalline and optically transparent (>94%), due to the large bandgap of ≥3.1 eV, with a valence band maximum located at ?5.1 eV. Hole‐transport analysis performed using field‐effect measurements confirms the p‐type character of CuSeCN yielding a hole mobility of 0.002 cm2 V?1 s?1. When CuSeCN is incorporated as the HTL material in organic light‐emitting diodes and organic solar cells, the resulting devices exhibit comparable or improved performance to control devices based on commercially available poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate as the HTL. This is the first report on the semiconducting character of CuSeCN and it highlights the tremendous potential for further developments in the area of metal pseudohalides.  相似文献   

12.
The ternary structure that combines fullerene and nonfullerene acceptors in a photoactive layer is demonstrated as an effective approach for boosting the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Here, highly efficient ternary OSCs comprising a wide‐bandgap polymer donor (PBT1‐C), a narrow‐bandgap nonfullerene acceptor (IT‐2F), and a typical fullerene derivative (PC71BM) are reported. It is found that the addition of PC71BM into the PBT1‐C:IT‐2F blend not only increases the device efficiency up to 12.2%, but also improves the ambient stability of the OSCs. Detailed investigations indicate that the improvement in photovoltaic performance benefits from synergistic effects of increased photon‐harvesting, enhanced charge separation and transport, suppressed trap‐assisted recombination, and optimized film morphology. Moreover, it is noticed that such a ternary system exhibits excellent tolerance to the PC71BM component, for which PCEs over 11.2% can be maintained throughout the whole blend ratios, higher than that (11.0%) of PBT1‐C:IT‐2F binary reference device.  相似文献   

13.
There has been rapid progress in solution‐processed organic solar cells (OSCs) and perovskite solar cells (PVSCs) toward low‐cost and high‐throughput photovoltaic technology. Carrier (electron and hole) transport layers (CTLs) play a critical role in boosting their efficiency and long‐time stability. Solution‐processed metal oxide nanocrystals (SMONCs) as a promising CTL candidate, featuring robust process conditions, low‐cost, tunable optoelectronic properties, and intrinsic stability, offer unique advantages for realizing cost‐effective, high‐performance, large‐area, and mechanically flexible photovoltaic devices. In this review, the recent development of SMONC‐based CTLs in OSCs and PVSCs is summarized. This paper starts with the discussion of synthesis approaches of SMONCs. Then, a broad range of SMONC‐based CTLs, including hole transport layers and electron transport layers, are reviewed, in which an emphasis is placed on the improvement of the efficiency and device stability. Finally, for the better understanding of the challenges and opportunities on SMONC‐based CTLs, several strategies and perspectives are outlined.  相似文献   

14.
The major impediment to the high photovoltaic performance of organic solar cells (OSCs) involves deficient photon harvesting and ineffective charge transfer from the photoactive layer to the electrodes. To improve these constraints, in this study, a new OSC device architecture is demonstrated by incorporating PbS colloidal quantum dots (QDs) between the organic photoactive layer and the top electrode. PbS QDs were spin-coated on top of an organic blend via a layer-by-layer deposition process, which formed a separate PbS QD layer with high density and uniformity. The PbS QD layer reinforced the optical property of the OSC by harvesting photons that were not absorbed by the underlying organic photoactive layer. In addition, the OSC employing the QD layer showed the enhanced charge transfer and suppressed recombination loss through the hybrid organic-inorganic interfacial contacts. Thus, a significant increase in the efficiency was achieved compared with the OSC with no PbS QD layer (10.12 vs 8.84%). Accompanied with the improved optoelectronic properties, a superior stability of the proposed architecture advances the practical viability of OSCs in various applications.  相似文献   

15.
Simplifying solution-processing of bulk-heterojunction (BHJ) organic solar cells (OSCs) via efficient interfacial layers with good generality is in great demand for pushing their large-scale applications. In this study, such a novel and cost-effective self-assembled monolayer (SAM) is reported herein as efficient hole transport layer (HTL) for high efficiency OSCs. The SAM-structured 4-(5,9-dibromo-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid (DCB-BPA) enables not only enhanced photon harvesting in the active layer but also minimized nonradiative recombination losses to improve interface charge extraction/transport. As a consequence, high short-circuit current (≈28.07 mA cm−2) is achieved for PM6:BTP-eC9 based OSCs to deliver a champion power conversion efficiency of 18.16%, among the highest values for OSCs using small organic HTLs to date. Importantly, good generality of this SAMs is demonstrated for representative high-efficiency BHJ OSCs systems like PM6:Y6 and PM6:PC61BM, outperforming conventional poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)-based counterparts. Excitingly, the SAM is applicable for large-area HTL processing via immersion method, affording 16.59% efficiency for PM6:BTP-BO-4Cl based OSCs. This study highlights the great potential of engineered SAMs for facile large-scale fabrication of high performance OSCs.  相似文献   

16.
Highly efficient and bendable organic solar cells (OSCs) are fabricated using solution‐processed silver nanowire (Ag NW) electrodes. The Ag NW films were highly transparent (diffusive transmittance ≈ 95% at a wavelength of 550 nm), highly conductive (sheet resistance ≈ 10 Ω sq?1), and highly flexible (change in resistance ≈ 1.1 ± 1% at a bending radius of ≈200 μm). Power conversion efficiencies of ≈5.80 and 5.02% were obtained for devices fabricated on Ag NWs/glass and Ag NWs/poly(ethylene terephthalate) (PET), respectively. Moreover, the bendable devices fabricated using the Ag NWs/PET films decrease slightly in their efficiency (to ≈96% of the initial value) even after the devices had been bent 1000 times with a radius of ≈1.5 mm.  相似文献   

17.
Oxide/silver/oxide multilayers as semitransparent top electrode for small molecule organic solar cells (OSCs) are presented. It is shown that two oxide layers sandwiching a central metal layer greatly improve the stability and lifetime of the organic solar cell. Thermally evaporated MoO3, WO3, or V2O5 layers are employed as an interlayer for subsequent silver deposition and significantly change the morphology of the ultrathin silver layer, improving charge extraction and electrodes series resistance. The transmittance of the electrode is increased by introducing oxide or oxide and organic multilayers as capping layer, which leads to higher photocurrent generation in the absorber layer. Application of 1 nm MoO3/11 nm Ag/10 nm MoO3/50 nm Alq3 multilayer electrodes in OSCs lead to an efficiency of 2.6% for a standard ZnPc:C60 cell, showing superior performance compared to devices with pure silver top contacts. The device lifetime is also strongly increased. MoO3 layers can saturate and stabilize the inner and outer metal surface, passivating it against most of the degradation mechanisms. With such an oxide/silver/oxide multilayer electrode, the time until the glass encapsulated OSC is degraded to 80% of its starting efficiency is enhanced from 86 h to approximately 4500 h compared to an OSC without an oxide interlayer.  相似文献   

18.
In this work, sidechain engineering on conjugated fused‐ring acceptors for conformation locking is demonstrated as an effective molecular design strategy for high‐performance nonfullerene organic solar cells (OSCs). A novel nonfullerene acceptor (ITC6‐IC) is designed and developed by introducing long alkyl chains into the terminal electron‐donating building blocks. ITC6‐IC has achieved definite conformation with a planar structure and better solubility in common organic solvents. The weak electron‐donating hexyl upshifts the lowest unoccupied molecular orbital level of ITC6‐IC, resulting in a higher VOC in comparison to the widely used ITIC. The OSCs based on PBDB‐T:ITC6‐IC reveal a promising power conversion efficiency of 11.61% and an expected high VOC of 0.97 V. The weaker π–π stacking induced by steric hindrance affords ITC6‐IC with enhanced compatibility with polymer donors. The blend film treated with suitable thermal annealing exhibits a fibril crystallization feature with a good bicontinuous network morphology. The results indicate that the molecular design approach of ITC6‐IC can be inspirational for future development of nonfullerene acceptors for high efficiency OSCs.  相似文献   

19.
Optical effects of the plasmonic structures and the materials effects of the metal nanomaterials have recently been individually studied for enhancing performance of organic solar cells (OSCs). Here, the effects of plasmonically induced carrier generation and enhanced carrier extraction of the carrier transport layer (i.e., plasmonic‐electrical effects) in OSCs are investigated. Enhanced charge extraction in TiO2 as a highly efficient electron transport layer by the incorporation of metal nanoparticles (NPs) is proposed and demonstrated. Efficient device performance is demonstrated by using Au NPs incorporated TiO2 at a plasmonic wavelength (560–600 nm), which is far longer than the originally necessary UV light. By optimizing the concentration ratio of the Au NPs in the NP‐TiO2 composite, the performances of OSCs with various polymer active layers are enhanced and efficiency of 8.74% is reached. An integrated optical and electrical model, which takes into account plasmonic‐induced hot carrier tunneling probability and extraction barrier between TiO2 and the active layer, is introduced. The enhanced charge extraction under plasmonic illumination is attributed to the strong charge injection of plasmonically excited electrons from NPs into TiO2. The mechanism favors trap filling in TiO2, which can lower the effective energy barrier and facilitate carrier transport in OSCs.  相似文献   

20.
Most of the high performance in perovskite solar cells (PSCs) have only been achieved with two organic hole transporting materials: 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene (Spiro‐OMeTAD) and poly(triarylamine) (PTAA), but their high cost and low stability caused by the hygroscopic dopant greatly hinder the commercialization of PSCs. One effective alternative to address this problem is to utilize inexpensive inorganic hole transporting layer (i‐HTL), but obtaining high efficiency via i‐HTLs has remained a challenge. Herein, a well‐designed inorganic–organic double HTL is constructed by introducing an ultrathin polymer layer dithiophene‐benzene (DTB) between CuSCN and Au contact. This strategy not only enhances the hole extraction efficiency through the formation of cascaded energy levels, but also prevents the degradation of CuSCN caused by the reaction between CuSCN and Au electrode. Furthermore, the CuSCN layer also promotes the formation of a pinhole‐free and compact DTB over layer in the CuSCN/DTB structure. Consequently, the PSCs fabricated with this CuSCN/DTB layer achieves the power conversion efficiency of 22.0% (certified: 21.7%), which is among the top efficiencies for PSCs based on dopant‐free HTLs. Moreover, the fabricated PSCs exhibit high light stability under more than 1000 h of light illumination and excellent environmental stability at high temperature (85 °C) or high relative humidity (>60% RH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号