首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
利用MODIS C6产品分析2006~2015年西北地区气溶胶光学厚度(aerosol optical depth, AOD)与Angström波长指数的时空分布特征及相互关系。结果表明:塔克拉玛干沙漠和陕西关中地区为气溶胶光学厚度高值区,青海和甘肃南部为AOD低值区,西北地区东部为Angström波长指数高值区,北疆地区Angström波长指数空间分布差异较大;西北地区年均AOD为0.208±0.011,年均Angström波长指数为1.185±0.025,2010~2015年AOD呈下降趋势,2008~2015年Angström波长指数呈上升趋势。AOD与Angström波长指数存在相反的季节变化关系,AOD春季最大,秋季最小,Angström波长指数与之相反。AOD月均最大值出现在4月,为0.35±0.038,10月份最小,为0.13±0.009,Angström波长指数12月份最大,为1.34±0.035,4月份最小,为0.97±0.054; AOD与Angström波长指数呈负相关,春季的相关性最大,为-0.77,冬季的相关性最小,为-0.28。对不同季节气溶胶光学厚度与Angstrom波长指数的相关性进行分析,结果说明西北地区全年粗、细粒径气溶胶粒子都占有一定比例,主要以小粒径的烟雾粒子为主,沙尘气溶胶粒子也占有一定比例,人为气溶胶排放从春季到冬季不断上升。  相似文献   

2.
利用卫星遥感的MODIS和MISR数据,对比分析了2014年亚太经合组织(APEC)会议期间(11月3日~12日)及其前后一个月的气溶胶时空分布特征。分析发现APEC会议期间的气溶胶光学厚度(aerosol optical depth, AOD)相比APEC会议前期,在京津冀地区有明显减小,MODIS(MISR)数据显示在京津冀地区AOD减小了38.7%(36.4%),在北京地区减小更多,减小了64.6%(39.9%)。Angstrom指数在京津冀地区的廊坊、保定、衡水等大部分城市,APEC会议期间的Angstrom指数相对前期较小,说明其在APEC会议期间气溶胶粒子的有效半径相对较大。APEC会议期间的细模态气溶胶光学厚度相比APEC会议前期也有所减小,且在北京地区细模态气溶胶光学厚度的下降幅度要大于粗模态气溶胶的下降幅度。  相似文献   

3.
卫星偏振测量是气溶胶遥感的一种重要手段.气溶胶模型的准确性是影响卫星遥感气溶胶参数精度的关键因素之一.在卫星反演气溶胶算法中,若忽略气溶胶粗模态贡献(星载偏振传感器气溶胶反演的一种常用假设)或选错气溶胶类型,均会带来反演结果的误差.基于六种典型的气溶胶类型(沙尘型、生物质燃烧型、乡村背景型、污染大陆型、污染海洋型和重污染型)模型,模拟研究了气溶胶模态和类型选择对卫星近红外偏振通道反演气溶胶光学厚度(AOD)的影响.利用矢量的辐射传输模式,模拟分析了六种气溶胶类型在865 nm波长的大气偏振反射分布函数(BPDF);发现大气BPDF与气溶胶粒子尺度密切相关,粗模态对大气BPDF的贡献远小于细模态;粗、细模态同时存在时,大气BPDF反而小于仅细模态时的BPDF.在此基础上,分析了"忽略粗模态贡献"和"选择错误气溶胶类型"两种情况下AOD的反演误差,得到如下结论:(1)忽略气溶胶粗模态贡献,会导致反演的细模态气溶胶光学厚度(AOD_f)偏小.六种典型气溶胶类型模型情况下,AOD_f反演结果可偏低12.3%~35.7%,其中沙尘型气溶胶时AOD_f反演误差最大,污染大陆型气溶胶时AOD_f反演误差最小.(2)若气溶胶类型选择错误,反演的AOD可能偏大或偏小,取决于与气溶胶类型对应的大气BPDF的差别.测试的六种气溶胶类型中,沙尘型与重污染型的大气BPDF差别最大,二者互换(即"选择错误")时,AOD反演误差最大,分别可达220.3%或-60.6%;乡村背景型与污染大陆型的大气BPDF差别最小,两者互换时,AOD反演误差最小,分别为7.1%和-3.0%.研究结果对于发展新一代星载偏振传感器及其气溶胶反演算法研究具有参考价值.  相似文献   

4.
基于 2005–2013 年 POLDER-3 多角度偏振观测资料, 通过最新开发的可以实现气溶胶光学特性及组分信息 同时反演的气溶胶组分卫星反演方法获得全球气溶胶综合产品, 并利用 AERONET (Aerosol Robotic Network) 全球站 点观测资料对反演获得的气溶胶光学辐射特性产品进行了综合评价分析, 讨论了气溶胶组分反演方法的适用性和 先进性。结果表明, 气溶胶组分反演方法应用于多角度偏振观测中, 不仅可以获得高精度的多个波段气溶胶光学厚 度 (AOD) 产品, 还可以获得多个波段吸收性气溶胶光学厚度 (AAOD) 以及不同波段组合下 (440/670 nm, 670/870 nm, 870/1020 nm, 440/1020 nm) Ångstrom ¨ 指数 (AE) 等气溶胶光学辐射特性产品, 并且这些气溶胶光学特性反演产品都具 有较小偏差, 表明气溶胶组分反演方法能够更好地对观测数据实现拟合, 获得更丰富更精确的气溶胶卫星反演产品, 为进一步优化算法并提供更加精确的卫星产品奠定基础。  相似文献   

5.
为精准预测我国东部典型城市群的气溶胶光学厚度 (AOD), 基于 2010–2019 年 MODIS 数据, 分析了京津冀、 长三角、珠三角区域之间以及区域内部的 AOD 时空差异特征, 构建了小波变换与 BP 神经网络相结合的 AOD 预测模 型, 并对典型城市群 AOD 进行了预测。研究结果表明: 1) 各城市群气溶胶浓度峰值均出现在夏季, 京津冀地区 AOD 均值最高, 长三角次之, 珠三角最小; 2) AOD 影响因素分析表明, 生产总值指数、人口密度、温度因素与 AOD 正相关, 植被覆盖指数 (NDVI)、降水量、风速与 AOD 负相关; 3) 各地区 AOD 预测结果其平均绝对误差 (MAE) 均低于 0.12, 误差小于 BP 神经网络预测结果, R2 均大于 0.75, 说明该模型相比 BP 神经网络, 能够有效提高 AOD 预测能力。  相似文献   

6.
利用2008年3月$\sim$2018年2月中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer, MODIS) MOD08M3遥感 反演气溶胶光学厚度(Aerosol optical depth, AOD)产品数据,结合K-means聚类分析方法,对中国中部和东部的气溶胶光学厚度 时间序列进行分析。结果表明: 1)从像元尺度分析气溶胶光学厚度的时间序列变化特征,避免了规律混杂问题,得到了准确的变化 规律和波动尺度。2)在年际间变化尺度上得到4个分区结果, AOD长期变化情况受人口分布的因素影响较大。3)在季节间变化尺度 上得到9种变化类型区,分别是:华北平原区、长江中下游区、高原山脉区、云贵区、兰州-银川-阿拉善盟区、四川盆地区、关中 陕南区、两广-湖南南部-江西南部区、东南沿海区,同时由一些变化分区的地理位置得到了该区AOD季节性波动的主导影响因素。 这些结果有助于研究AOD时间序列的准确变化和东部地区的气候环境。  相似文献   

7.
气溶胶光学性质对于气候、环境以及卫星遥感具有重要意义。利用CE317太阳光度计定点观测了天津近岸2014年3~5月气溶胶光学数据,分析了渤海湾近岸地区春季气溶胶光学特性。结果表明:气溶胶光学厚度(aerosol optical depth , AOD)光谱基本满足Angstrom关系;AOD日变化基本有三种变化趋势:上升型、平稳型、下降型;春季440 nm波段AOD均值为0.776,Angstrom指数α均值为1.011,浑浊度系数β均值为0.344。将该结果与黄海近岸的青岛地区进行了比较分析,表明了气溶胶光学性质的区域性。  相似文献   

8.
利用CE318太阳辐射计测量了西北戈壁地区的气溶胶光学厚度(AOD),并给出了该地区典型的晴朗和沙尘天气条件下气溶胶光学厚度的变化,以670 nm的气溶胶光学厚度值为例,AOD平均值分别为0.2和0.47,给出了相应大气条件下波长指数和大气混浊度因子的变化,并进行简要分析.计算了光学厚度的逐月变化量,最后得出了西北戈壁地区气溶胶光学特性的初步结论.  相似文献   

9.
牟福生  李昂  谢品华  王杨  徐晋  陈浩  张杰  吴丰成 《红外与激光工程》2016,45(2):211003-0211003(6)
利用2012年9月~2014年8月年合肥市西北郊的CE318型太阳光度计观测资料,分析了合肥地区气溶胶光学厚度(AOD)和Angstrom波长指数()的时间变化特征。结果表明,合肥地区AOD全年较高,2012年9月~2013年8月和2013年9月~2014年8月两个时段的年平均值分别为0.600.15和0.730.23。春季受沙尘天气影响气溶胶波长指数最小,秋季受西北高空气团影响AOD最低。研究了AOD和大气水汽含量之间的关系,结果表明AOD和大气水汽含量呈正相关关系。利用Hysplit风场轨迹模型对各个季节的风场进行了研究,合肥春季主要受西北气流(约42%)影响,夏季风场主要受偏南风场(约50%)影响,秋季受北风风场(约39%)影响较大,冬季受西北高空气团影响较大。CE318和MODIS对比结果表明,两者具有较好的一致性,相关系数在0.7以上。  相似文献   

10.
本文基于我国东部沿海岸线分布的Beijing-RADI、Beijing-CAMS、Xuzhou-CUMT、Taihu、Hong_Kong_PolyU、Hong_Kong_Sheung六个AERONET长期观测站点的光学厚度(AOD)、Angstrom指数(AE)、单次散射反照率(SSA)、细粒子百分比(FMF)四种气溶胶的物理光学特性观测产品,结合Terra/Aqua MODIS Level2 C6 AOD产品,研究了我国东部地区气溶胶时空变化特性及类型特性。研究表明:1)北京、徐州、太湖、香港四个地区地基的AOD年均值徐州>太湖>北京>香港,依次为0.805±0.129、0.775±0.069、0.664±0.197、0.519±0.125;2)在AERONET站点处,MODIS AOD年均值检测值太湖>徐州>香港>北京,依次为0.902±0.227、0.772±0.082、0.547±0.064、0.517±0.234,与地基检测值依次相差22.2%、4.1%、5.5%、16.3%;3)AE年均值香港>太湖>徐州>北京,依次为1...  相似文献   

11.
利用2011年到2014年北京太阳光度计数据对北京地区的气溶胶光学特性进行了研究。北京地区气溶胶光学厚度(AOD)全年较高,四年440nm波长的AOD年均值分别是0.67±0.70,0.69±0.71,0.73±0.66,0.75±0.66。AOD月均值表现出一定的季节变化,最大值和最小值一般出现在春季和秋季。通过气溶胶类型分类可知,除了春季受沙尘大颗粒气溶胶影响外,北京地区高气溶胶主要是由城市细粒子气溶胶引起,且四季小粒子增长现象明显,其中夏秋季主要为吸湿性增长,其他季节主要为静稳天气下的增长。通过对比沙尘和霾天气下气溶胶性质进行对比,结果表明:霾天气下AOD一般高于沙尘天气。Hysplit风场后向轨迹模型结果表明,沙尘天气下气团为穿过蒙古草原和沙漠的西北风场。在灰霾天气下风场风速较小且主要以东南和西南风场为主,高气溶胶状态为本地积累和外来输送共同作用产生。  相似文献   

12.
为了解亚北极太平洋大气对海洋的长期影响, 利用 2003–2018 年 MODIS 卫星遥感数据, 对部分区域 (40◦ N∼50◦ N, 160◦ E∼160◦ W) 进行研究。将研究区域按照经度每 10◦ 划分为 4 个子域进行比较研究, 分析了各区域气溶 胶光学厚度 (AOD) 和海洋净初级生产力 (NPP) 的变化特征及相关性。结果表明各区域 AOD 及 NPP 均具有年际周期 性, AOD 于 7 月达到峰值, NPP 于 8、9 月达到峰值, 且二者均存在明显的自西向东递减趋势。根据时滞相关性分析 发现, 各区域 AOD 均与滞后 1∼2 个月的 NPP 有较强相关性, 自西向东四个研究子域的最高 Pearson 相关系数分别为 0.75、0.84、0.79、0.74。利用 7 月 AOD 峰值对气溶胶进行分类, 发现沙尘为影响该区域 NPP 的重要气溶胶类型。对 各区域的海表温度 (SST) 和光合有效辐射 (PAR) 的研究发现, 二者均无明显的自西向东变化趋势, 较好地排除了这两 种因素对 NPP 自西向东趋势的影响。  相似文献   

13.
利用POM02太阳光度计测得的数据反演得到气溶胶光学厚度和波长指数,选择晴好天气下德令哈和合肥地区的大气气溶胶光学厚度和波长指数数据进行统计分析。得到两地气溶胶光学厚度与波长的季节变化关系,并对气溶胶光学厚度的月变化特征进行分析,得到了两地波长指数、浑浊度系数、气溶胶光学厚度等参数的变化特征,这对研究两地气溶胶光学特性有一定的参考意义。  相似文献   

14.
秸秆焚烧对中国东部气溶胶时空格局的影响   总被引:6,自引:0,他引:6  
利用2001-2009年期间的MODIS遥感数据,结合地面能见度资料和近地面风场资料,通过个例和统计分析了我国东部地区6月份的气溶胶时空格局及其成因。结果表明: 1)MODIS监测的火点主要分布在32°N -35°N东西向带状区域内,气溶胶光学厚度(AOD)的高值区和监测到的火点高发区有着较好的空间对应关系。6月受到秸秆焚烧的影响,整个东部地区的AOD达到全年最高。此外,地形和人类活动共同决定了东部地区气溶胶的分布格局。2)安徽地区的能见度、霾日数以及AOD的逐月变化关系表明,6月份夏收季节大量焚烧秸秆,造成空气中颗粒物浓度升高,配合相应的气象条件使得整个东部地区的AOD均有所上升。这进一步加重了东部地区的空气污染,形成了严重灰霾天气,从而导致能见度下降。3)我国东部地区6月份AOD的时空变化(特别是年际变化)与近地面风场时空变化密切相关:风速大值区,污染物容易扩散,AOD相对较低;风速小值区,即气流停滞区,水平扩散条件不好,污染物浓度容易升高,AOD相对较高。  相似文献   

15.
利用MODIS L1B 1km分辨率数据和NASA 的V5.2 气溶胶改良业务反演算法,对南京都市圈2013年9月至2014年1月期间的气溶胶光学厚度(AOD)进行反演,并运用AERONET地基气溶胶监测网的AOD产品对反演结果进行验证。然后,将经过验证后的AOD与国家环保部建立的国家空气质量自动监测点实测得到的PM2.5质量浓度和PM10质量浓度根据经典统计学进行线性回归性分析,并用气溶胶细模态光学厚度AODf和气象因子对PM2.5质量浓度与MODIS AOD之间的模型进行修正,修正后的模型为y=136.78+9.16x1-0.36 x2-3.98x3,R2=0.79,并应用该模型,证实气溶胶光学厚度可以用来对城市空气质量进行评价。  相似文献   

16.
针对MODIS气溶胶产品受算法局限性、厚云层造成缺值问题,提出基于反射率统计模型的普通克里金-自然邻近插值方法,利用6S辐射传输模型模拟MODIS蓝光波段表观反射率随地表反射率、气溶胶光学厚度(aerosol optical depth, AOD)的响应变化,建立反射率与AOD的统计模型。采用2017年11月的中国区域气溶胶产品MOD04_L2、反射率数据做实验,并利用时空匹配的AERONET地基站数据做交叉验证,结果表明:利用该方法填充MOD04_L2中国缺值区域精度较好,60%以上的插补结果处于期望误差界限内,不仅能有效解决低反射率地区AOD有效值缺失问题,而且不受气溶胶类型假设不当影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号