首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 515 毫秒
1.
利用2011年到2014年北京太阳光度计数据对北京地区的气溶胶光学特性进行了研究。北京地区气溶胶光学厚度(AOD)全年较高,四年440nm波长的AOD年均值分别是0.67±0.70,0.69±0.71,0.73±0.66,0.75±0.66。AOD月均值表现出一定的季节变化,最大值和最小值一般出现在春季和秋季。通过气溶胶类型分类可知,除了春季受沙尘大颗粒气溶胶影响外,北京地区高气溶胶主要是由城市细粒子气溶胶引起,且四季小粒子增长现象明显,其中夏秋季主要为吸湿性增长,其他季节主要为静稳天气下的增长。通过对比沙尘和霾天气下气溶胶性质进行对比,结果表明:霾天气下AOD一般高于沙尘天气。Hysplit风场后向轨迹模型结果表明,沙尘天气下气团为穿过蒙古草原和沙漠的西北风场。在灰霾天气下风场风速较小且主要以东南和西南风场为主,高气溶胶状态为本地积累和外来输送共同作用产生。  相似文献   

2.
利用CE318太阳辐射计测量了西北戈壁地区的气溶胶光学厚度(AOD),并给出了该地区典型的晴朗和沙尘天气条件下气溶胶光学厚度的变化,以670 nm的气溶胶光学厚度值为例,AOD平均值分别为0.2和0.47,给出了相应大气条件下波长指数和大气混浊度因子的变化,并进行简要分析.计算了光学厚度的逐月变化量,最后得出了西北戈壁地区气溶胶光学特性的初步结论.  相似文献   

3.
气溶胶光学性质对于气候、环境以及卫星遥感具有重要意义。利用CE317太阳光度计定点观测了天津近岸2014年3~5月气溶胶光学数据,分析了渤海湾近岸地区春季气溶胶光学特性。结果表明:气溶胶光学厚度(aerosol optical depth , AOD)光谱基本满足Angstrom关系;AOD日变化基本有三种变化趋势:上升型、平稳型、下降型;春季440 nm波段AOD均值为0.776,Angstrom指数α均值为1.011,浑浊度系数β均值为0.344。将该结果与黄海近岸的青岛地区进行了比较分析,表明了气溶胶光学性质的区域性。  相似文献   

4.
随着全球工业化速度加快和人口的增多,大气环境问题日益突出,NO2和气溶胶在大气化学中扮演着重要的角色。地基多轴差分吸收光谱技术(MAX-DOAS)基于被动DOAS原理,近年来已成功应用于大气痕量气体柱浓度和气溶胶光学厚度(AOD)测量方面。本文基于被动DOAS算法对合肥秸秆燃烧期间NO2柱浓度以及气溶胶光学厚度进行了观测,并把对流层柱浓度和臭氧监测仪(Ozone Monitoring Instrument, OMI)结果进行对比;测量的气溶胶光学厚度和太阳光度计(CE318)进行了对比。结果表明,MAX-DOAS测量结果要高于卫星值,11月6日MAX-DOAS测量NO2柱浓度日均值为OMI的1.9倍;二者在无云条件下一致性较好;MAX-DOAS反演AOD和太阳光度计结果相关性在0.9以上。  相似文献   

5.
利用MODIS C6产品分析2006~2015年西北地区气溶胶光学厚度(aerosol optical depth, AOD)与Angström波长指数的时空分布特征及相互关系。结果表明:塔克拉玛干沙漠和陕西关中地区为气溶胶光学厚度高值区,青海和甘肃南部为AOD低值区,西北地区东部为Angström波长指数高值区,北疆地区Angström波长指数空间分布差异较大;西北地区年均AOD为0.208±0.011,年均Angström波长指数为1.185±0.025,2010~2015年AOD呈下降趋势,2008~2015年Angström波长指数呈上升趋势。AOD与Angström波长指数存在相反的季节变化关系,AOD春季最大,秋季最小,Angström波长指数与之相反。AOD月均最大值出现在4月,为0.35±0.038,10月份最小,为0.13±0.009,Angström波长指数12月份最大,为1.34±0.035,4月份最小,为0.97±0.054; AOD与Angström波长指数呈负相关,春季的相关性最大,为-0.77,冬季的相关性最小,为-0.28。对不同季节气溶胶光学厚度与Angstrom波长指数的相关性进行分析,结果说明西北地区全年粗、细粒径气溶胶粒子都占有一定比例,主要以小粒径的烟雾粒子为主,沙尘气溶胶粒子也占有一定比例,人为气溶胶排放从春季到冬季不断上升。  相似文献   

6.
利用两个AERONET站点(Hangzhou_ZFU、SACOL)的Level 2 气溶胶光学厚度(aerosol optical depth, AOD)数据对比验证CALIOP Level 2 AOD数据。结果表明:Hangzhou_ZFU、SACOL站的相关系数为0.87、0.85,回归方程的斜率为0.76、0.92,这表明CALIOP AOD与AERONET AOD显著相关,在这两个站点及附近区域具有适应性。基于2008~2015年无云条件下的CALIOP Level 3月气溶胶产品和同期的MODIS Terra/Aqua Level 3月气溶胶产品,对比分析中国东南和西北区域气溶胶光学厚度(aerosol optical depth, AOD)时空分布特征。分析表明:中国东南区域AOD季节与空间变化明显,AOD高值主要分布在长三角、珠三角等地,且夏季最高、春季次之,秋冬季相当。MODIS AOD月均值保持在在0.25~0.8之间,且与CALIOP 夜间AOD值接近,但与CALIOP白天AOD值差异较大,最大相差值可达0.45。中国西北区域两种卫星获取的AOD值空间分布非常相似,其高值区都位于塔里木盆地、准格尔盆地和柴达木盆地;AOD值春季最高,夏季减少、冬季次之、秋季最低;MODIS AOD值波动显著且普遍高于CALIOP AOD值。  相似文献   

7.
基于 2004–2018 年 MODIS 长期观测的气溶胶日产品 MOD04 L2, 利用线性倾向估计法和 AOD-AE 气溶胶类 型划分法, 得到中国区域长时间序列的气溶胶光学特性与气溶胶类型的时空变化规律。研究表明, 在此期间: (1) 550 nm 处气溶胶光学厚度 (AOD) 高值分布在海拔较低、人口密集、工业发达的大城市群, 低值分布在人烟稀少、植被覆 盖度高的山区和草原; Ångstrom ¨ 波长指数 (AE) 高值分布在四川盆地边缘、贵州等地区, 低值分布在西北沙漠地区。 (2) 中国 73% 的地区 AOD 呈减小趋势, “胡焕庸线”东部的 AE 整体也呈减小趋势, 且 AOD 与 AE 均在 2014–2018 年期 间明显减小。 (3) 在季节变化趋势方面, AE 与 AOD 基本相反, 城市工业型气溶胶与 AOD 相同, 而清洁大陆型气溶胶 与 AOD 相反。 (4) 清洁大陆型气溶胶占比在 2014 年之后逐年递增, 说明中国空气质量逐渐改善。  相似文献   

8.
沙尘气溶胶通过改变地-气系统的热红外辐射传输可引起地表温度遥感探测结果发生变化.较系统地研究了冬季和夏季沙尘气溶胶光学厚度(AOD)变化对热红外分裂窗通道亮温(BT)和地表反演温度(LST)的影响,以及反演结果受大气水汽和地表因素的作用.红外辐射传输模拟计算表明:1)沙尘气溶胶影响下,热红外分裂窗通道亮温差小于零;2)随AOD增大,BT和LST都减小,其中LST减小的速度大于BT;3)不同水汽含量下LST变化不明显;4)当AOD较大时,LST主要反映沙尘层的温度信息.模拟结果与中国北方典型沙尘实例分析结果有较好的一致性.  相似文献   

9.
为获取徐州市郊大气气溶胶污染特征规律,利用地基遥感手段对2013年7月~2014年5月间徐州市郊气溶胶特性参数进行分析,结果揭示:(1)受冬季燃煤供暖和夏季秸秆焚烧等因素影响,气溶胶光学厚度季节特征显著,且月际、日内波动性显著;(2)气溶胶粒子多含水分,干粒子极少,主要为混合型和人为污染型;(3)5月气溶胶以粗粒子为主控粒子,其余月份均以细粒子为主,且气溶胶粒子类型多样,成分复杂;(4)春季粗模态的气溶胶粒子多于细模态粒子,夏季则相反,秋冬季节粗细模态粒子分布相当;另外,观测期间内徐州市郊基本未受沙尘天气干扰,积聚模态下的细粒子对徐州市郊气溶胶高污染的贡献更大。  相似文献   

10.
利用长时间序列(2007~2014年)的MODIS/Terra数据探讨了江西地区气溶胶光学厚度(aerosol optical depth, AOD)空间变化特征,发现该地区平均AOD呈现由南往北逐渐递增的趋势,其中,九江和南昌达到最高。同时,利用CALIPSO/CALIOP 垂直特征掩膜获得了气溶胶层与云层的混合和分离状态,计算了气溶胶、不同子类型气溶胶和云的垂直概率分布和最大似然高度(maximum probability height, MPH)。结果表明:气溶胶主要聚集在1~3.5 km,气溶胶层和云层混合状态出现的概率高于分离状态。在2~4 km之间,春季污染沙尘出现的概率最高,冬季次之,夏季与秋季相当,而烟尘气溶胶夏季出现的概率最高,春、冬季相当,秋季次之。基于夜间CALIOP数据计算得到的气溶胶和云的MPH均表现出较大的季节差异性。  相似文献   

11.
针对温度效应会影响太阳光度计观测结果且温度校正系数难以获取等问题, 设计了一种基于热电制冷器 (TEC) 的全自动太阳光度计温控系统。介绍了自研全自动太阳光度计的整体设计, 特别是温控系统设计, 并分析了温 度对探测器响应的影响。最后对该全自动太阳光度计进行了野外测试, 在合肥地区与商用仪器CE318 进行了同步观测 比对, 测试结果表明全自动太阳光度计反演的气溶胶光学厚度与CE318 校正后的结果一致, 偏差在0.01 以内;在敦煌 地区的长期测试结果表明, 在温度变化较大的长期野外观测中, 全自动太阳光度计温控系统均保持在 (25 ± 0.2) ℃内, 验证了温控系统设计的有效性和可靠性。  相似文献   

12.
利用POM02太阳光度计测得的数据反演得到气溶胶光学厚度和波长指数,选择晴好天气下德令哈和合肥地区的大气气溶胶光学厚度和波长指数数据进行统计分析。得到两地气溶胶光学厚度与波长的季节变化关系,并对气溶胶光学厚度的月变化特征进行分析,得到了两地波长指数、浑浊度系数、气溶胶光学厚度等参数的变化特征,这对研究两地气溶胶光学特性有一定的参考意义。  相似文献   

13.
2007年11月,利用CE-318太阳光度计对南京仙林地区进行了气溶胶光学特性的观测实验.详细讨论了气溶胶光学厚度反演的原理与方法,采用Langley法对CE-318进行了现场定标,利用观测数据反演了气溶胶光学厚度和Angstrom系数.分析得出了550 nm处的光学厚度平均为0.5183,浑浊度系数β平均值为0.2325,波长指数α平均值为1.3373.分析了光学厚度的日变化和逐日变化,讨论了变化的原因.对Angstrom参数的分析表明仙林地区气溶胶以中小粒子为主,这对于分析和监测南京地区大气污染、改善空气质量具有一定的积极意义.  相似文献   

14.
利用 AERONET 北京站点 2016 年 1 月-2018 年 12 月的数据产品, 分析了北京地区气溶胶光学厚度 (AOD)、 Angstrom ¨ 波长指数 α、粒径谱分布的季节特性; 同时选取典型污染天气条件下的数据, 分析了不同季节主控污染物的 类型, 并使用相应雷达比对比反演激光雷达消光结果。研究结果表明: 北京地区 AOD 季节变化特征明显, 主要表现为 春、夏季大, 秋、冬季小, 其中夏季 (0.83) 显著高于其他季节; α 表现出与 AOD 一致的变化规律, 春季最低 (α = 0.95), 表明北京春季受沙尘影响显著, 为主要污染物; 而夏季最大 (α = 1.23), 表明沙尘影响迅速减弱, 细粒子颗粒物占主导, 符合温带季风气候的特点; AOD 和 α 关系图中, 不同污染物分布特征存在差异, 可通过阈值法对污染物进行分类。此 外, 以两种典型污染情况为例, 使用不同雷达比反演激光雷达的消光系数的结果表明, 可以使用太阳光度计数据对反 演参数进行优化。  相似文献   

15.
研制了一套能连续探测海洋大气气溶胶光学性质垂直分布的船载小型米散射激光雷达系统,用该系统于2015年5月和9月在青岛海域开展了海洋大气气溶胶观测实验.以同船搭载的Microtops II型手持式太阳光度计同步测量得到的气溶胶光学厚度作对比数据,比较了两种仪器的气溶胶光学厚度测量结果,得到观测海域柱平均激光雷达比为32.4sr,标准偏差4.6sr.由Fernald方法得到了实验海域夏季15 km以下的气溶胶消光系数廓线.连续观测实验表明研制的船载米散射激光雷达结构紧凑,易于在船载平台操作,能对海洋大气气溶胶的光学特性进行连续有效的高时空分辨率廓线测量.  相似文献   

16.
利用卫星遥感的MODIS和MISR数据,对比分析了2014年亚太经合组织(APEC)会议期间(11月3日~12日)及其前后一个月的气溶胶时空分布特征。分析发现APEC会议期间的气溶胶光学厚度(aerosol optical depth, AOD)相比APEC会议前期,在京津冀地区有明显减小,MODIS(MISR)数据显示在京津冀地区AOD减小了38.7%(36.4%),在北京地区减小更多,减小了64.6%(39.9%)。Angstrom指数在京津冀地区的廊坊、保定、衡水等大部分城市,APEC会议期间的Angstrom指数相对前期较小,说明其在APEC会议期间气溶胶粒子的有效半径相对较大。APEC会议期间的细模态气溶胶光学厚度相比APEC会议前期也有所减小,且在北京地区细模态气溶胶光学厚度的下降幅度要大于粗模态气溶胶的下降幅度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号