首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
<正>掺铋石英光纤在1100~1800 nm波段具有超宽带发光特性,在全波段光通信领域展现出重大的应用潜力。铋离子在近红外波段的光谱特性与玻璃成分密切相关,在含不同共掺元素的硅基玻璃中可形成以下铋活性中心(BAC):BAC-Al、BAC-P、BAC-Si、BACGe。自2004年以来,国外研究机构在多波段宽带放大用掺铋光纤方面取得重大突破,如俄罗斯科学院光纤光学研究中心(FORC)和英国南安普敦大学。  相似文献   

2.
Er3+/Ce3+共掺铋锗酸盐玻璃及其光纤的制备和光谱性质   总被引:1,自引:0,他引:1  
用高温熔融法制备了Er3+/Ce3+共掺铋锗酸盐(Bi2O3-GeO2-Ga2O3-Na2O)玻璃,研究分析了该玻璃中Er3+离子1.5μm波段荧光和上转换发光,Ce3+离子共掺引入的Er3+:4I11/2→Ce3+:2F5/2间能量传递能有效地抑制上转换发光并增强1.5μm波段荧光发射.同时,利用该组分玻璃拉制了包层直径为125 μm的铋锗酸盐玻璃掺Er3+光纤,1310 nm波长处光纤传输损耗为3.4 dB/m.通过对975 nm波长激励下光纤的放大自发辐射(ASE)测试表明,铋锗酸盐玻璃掺Er3+光纤可在1450~1650 nm波长范围获得宽带ASE光谱,因此是一种适用于宽带光纤放大器的增益介质.  相似文献   

3.
1.3μm光通信系统用掺Pr光纤放大器的开发现状阎永志掺加稀土类离子的光纤放大器,噪声系数低、增益高、饱和输出范围大,是以干线系统为中心的光通信系统的关键部件。1.3μm和1.55μm波段同为石英光纤零色散波段,均为光通信广泛采用。1.55μm波段在...  相似文献   

4.
分析了波长为980nm激光抽运下的Er3+,Tm3+共掺石英光纤放大器的工作原理,并根据此工作原理,建立了Er3+与Tm3+之间能量转移过程的数学模型。基于速率方程和功率传输方程,数值模拟了此种光纤放大器稳态工作特性,给出了不同光纤长度、不同输入抽运功率以及不同掺Tm3+浓度下多路光信号放大时输出信号功率谱的变化规律。仿真结果表明,当输入抽运功率为400mW时,Er,Tm共掺石英光纤放大器的3dB带宽可达90nm(比传统掺Er3+光纤放大器的增益带宽大两倍以上),平均增益可达10dB,可用于未来密集复用系统(DWDM)中的宽带放大器件。  相似文献   

5.
基于光纤放大器增益谱的宽带平坦化发展需要,设计了一个两段铋基掺铒光纤(Bi-EDF)级联并携带一个C波段(1 530~1 565 nm)宽带光纤布拉格光栅(FBG)的双通结构型铋基掺铒光纤放大器(Bi-EDFA),从理论上研究了其对输入信号的放大特性。研究表明:FBG的引入可以使C和L波段(1 570~1 620 nm)信号分别经历不同长度Bi-EDF的双向传输,各自获得高增益放大,实现增益谱的宽带平坦化。在200 mW的1 480 nm双向对称泵浦下,第一级和第二级Bi-EDF长度分别为50 cm和170 cm时,对于波长间隔为2 nm、每路功率为-30 dBm的56路C+L波段信号的输入,Bi-EDFA高于30 dB的增益带宽达到了90 nm(1 530~1 620 nm),平均增益为35.7 dB,增益起伏仅为2.3 dB。同时,噪声系数得到明显改善。研究结果对于研制具有宽带、增益平坦的C+L波段Bi-EDFA具有实际指导意义。  相似文献   

6.
应用于动态通信网络中的光放大器需要恒定的信号增益.为此,设计了一个基于环形激光腔结构的宽带铋基掺铒光纤放大器(Bi-EDFA),进行了宽带Bi-EDFA信号增益箝制特性的理论研究.结果表明:通过将放大器输出的一个前向放大自发辐射(ASE)噪声光反馈到输入端,可以实现对1.53 μm波段传输信号的增益箝制.环路损耗越小,...  相似文献   

7.
研制出了铋镓铝共掺的高浓度掺铒光纤,这种掺铒光纤在1 530 nm处的吸收系数达到了28.5 dB/m.利用这种铋镓铝共掺的高浓度掺铒光纤制成了C波段和L波段的掺铒光纤放大器(EDFA),测试这两种放大器的荧光谱和增益谱线.利用2.5 m的高浓度掺铒光纤制作的C波段EDFA就实现了高增益.利用10 m这种掺铒光纤制作的L波段放大器实现了有效的I波段放大.  相似文献   

8.
目前基于掺铒光纤放大器(EDFA)的光纤通信骨干网络仅能有效利用C+L波段(1524~1625 nm)。在E+S波段,锗硅酸盐掺铋光纤可进一步扩展放大器的增益带宽,具有重要研究价值,但其过长的使用长度严重制约了其应用。报道了一种高吸收锗硅酸盐掺铋光纤,其使用长度得到大大缩短,同时具有高增益。基于前向泵浦结构测试了掺铋光纤的增益性能,泵浦功率和波长分别为367 mW和1310 nm,输入信号总功率为-20 dBm。结果表明,50 m长的光纤在1414~1479 nm实现了大于20 dB的增益,65 m长的光纤的增益在1450 nm处达到最大(33 dB),单位长度增益系数达0.51 dB/m。研究结果证明了锗硅酸盐掺铋光纤在WDM光纤通信网络中的实际应用潜力。  相似文献   

9.
拉曼(Raman)光纤放大器(RFA)是被誉为光纤通信发展里程碑的掺饵光纤放大器(EDFA)之后又一个引人注目的光放大器。RFA的出现,将会对光纤放大器和光纤通信产生重大的影响。人们对RFA的兴趣来源于这种放大器可以提供整个光纤波长波段的放大,通过适当改变泵浦激光光波波长可达到在任意波段进行光放大的宽带放大器,甚至可以在1270nm~1670nm整个光纤波段内提供光放大。  相似文献   

10.
宽带、调整、长距离和智能化是目前光纤通信系统发展的趋势所在,迅速膨胀的信息服务量使宽带成为最迫切的需求,新波段与长增益带宽光纤放大器的研究炙手可热,本文阐述了近期各波段光纤放大器以及拉曼放大器的进展,并揭示了光纤放大器向短波段和混合型发展的趋势。  相似文献   

11.
为进一步揭示硫系玻璃基掺Er3+微结构光纤作为中红外光纤放大器增益介质的可行性,数值求解了800 nm泵浦波长下Ga5Ge20Sb10S65硫系玻璃基掺Er3+微结构光纤中Er3+离子数速率方程和光功率传输方程组,理论研究了4.5μm波段中红外信号的放大特性。结果显示,Ga5Ge20Sb10S65硫系玻璃基掺Er3+微结构光纤具有较高的信号增益和很宽的增益谱。在50 cm光纤长度上,最大信号增益超过了40 dB,高于30 dB信号增益的放大带宽达到了280 nm(4 420~4 700 nm)。同时,进一步研究分析了4 500 nm波长信号增益与光纤长度、信号输入功率和泵浦功率的关系。研究表明,Ga5Ge20Sb10S65硫系玻璃基掺Er3+微结构光纤是一种理想的可应用于4.5μm波段中红外宽带放大器的增益介质。  相似文献   

12.
报道了一种紧凑型930nm被动锁模掺钕全光纤激光器,该激光器由掺钕全光纤振荡器和一级掺钕全光纤放大器构成。振荡器采用线型腔结构,增益介质为长度8cm的高掺杂掺钕石英光纤,抽运源为一个最大功率为200mW的808nm单模半导体激光器,利用半导体可饱和吸收镜实现被动锁模,获得超短脉冲激光输出。振荡器输出平均功率为1mW,重复频率为28.2MHz,脉冲宽度为8.8ps,3dB光谱宽度为0.37nm。为抑制掺钕光纤放大器中1060nm波段激光的竞争,采用长度为10m的W型掺钕光纤作为增益介质进行功率放大,很好地抑制了1060nm波段激光,最终实现了平均功率为117 mW,中心波长为930nm,单脉冲能量为4.15nJ,重复频率为28.2 MHz,脉冲宽度为8.8ps,10dB光谱宽度为2.98nm的脉冲激光输出。  相似文献   

13.
提出并论证了一种新的低噪声系数C+L波段掺铒光纤放大器的结构.在该结构中,利用一个前置放大器以减少噪声系数,并利用一个带有光纤布拉格光栅的双通结构以增加L波段增益,同时减少噪声系数.实验结果表明,新宽带放大器的噪声系数减小了约2 dB,并且在1 525~1 605 nm波长范围内,增益提高到了25 dB以上.  相似文献   

14.
掺Yb3+光纤放大器的自发辐射噪声分析   总被引:1,自引:0,他引:1  
为了研究掺Yb3+光纤放大器中自发辐射噪声分布情况,利用离散化的方法求解掺Yb3+)光纤放大器的速率方程,理论研究了不同的抽运方式、端面反射率、抽运功率以及有无滤波等条件下,端面抽运掺Yb3+光纤放大器中自发辐射的功率放大特性.结果表明,不同边界条件下的自发辐射功率差异较大;通过减少光纤端面的菲涅耳反射和利用滤波技术等方法,可有效抑制光纤激光放大器中自发辐射噪声的功率放大.  相似文献   

15.
宽带、高速、长距离和智能化是目前光纤通信系统发展的趋势所在。迅速膨胀的信息服务量使宽带成为最迫切的需求,新波段与长增益带宽光纤放大器的研究炙手可热。本文阐述了近期各波段光纤放大器以及拉曼放大器的进展,并揭示了光纤放大器向短波段和混合型发展的趋势。  相似文献   

16.
铋掺杂玻璃具有宽带红外发光特性,有望应用于宽带光纤放大器和超短脉冲激光等领域,近几年来受到了人们的关注.迄今为止.已用铋离子掺杂玻璃实现了第二个光通讯窗口(1.3μm)的光放大和激光输出,及同时覆盖第二和第三(1.55 μm)光通讯窗口的超宽带光放大.铋离子掺杂玻璃红外发光的研究从材料学的角度考虑,目前还有待解决的重要问题可归纳为以下两个方面:1)红外发光的起源;2)发光性能的进一步提高.  相似文献   

17.
掺铋光纤具有独特的发光特性,在光纤放大器和激光器中有着广阔的应用前景。为了掌握掺铋光纤的发光机理,研制出高效率、高性能的掺铋材料,整理了掺铋光纤发光机理的研究成果,从铋活化中心的结构和发光特性出发,总结了掺铋光纤中不同结构与发光波长之间的关系。掺铋材料由于具有荧光寿命长、光谱范围宽等优点,有望在超宽带光源、超宽带放大器、可调谐激光器等领域得到更为广泛的应用。  相似文献   

18.
张美  延凤平  刘硕  尹智 《中国激光》2015,(4):159-166
近年来随着对单频光纤激光器和放大器研究的不断深入,得到了越来越高的输出功率,由于单频光纤激光器、放大器的输出功率在很大程度上受限于受激布里渊散射(SBS)效应,故需要研究SBS效应的影响因素和抑制方法。利用铥离子(Tm3+)的速率方程和SBS效应下双包层光纤放大器的速率方程,建立了单频光纤放大器的理论模型,计算得到了掺铥光纤放大器的能量分布和输出功率,并讨论了光纤长度、抽运功率、Tm3+掺杂浓度、增益光纤内温度分布等因素对单频光纤放大器中SBS效应和输出功率的影响,总结了在提高放大器输出功率的同时有效抑制SBS效应的方法。自行搭建了全光纤掺铥光纤种子光源及放大器,高稳定性的全光纤掺铥激光种子光的中心波长为1941 nm,信噪比约为60 d B。当掺铥放大器的抽运功率达到2.15 W时,激光的输出功率可以达到0.766 W。  相似文献   

19.
S波段掺铥光纤放大器的研究进展   总被引:3,自引:0,他引:3  
掺铥光纤放大器是S波段最具潜力的放大器件,对光纤通信系统谱带向S波段拓展具有重要意义。文章介绍了铥离子的能级特点;比较了常用的掺铥光纤放大器基质的优缺点;详细介绍了各种常见泵浦方式的特点。  相似文献   

20.
掺铒碲基光纤放大器最新研究进展   总被引:1,自引:0,他引:1  
掺铒碲基光纤放大器(EDTFA)由于能同时在C L波段(1530-1610nm)或L波段(1580-1620nm)对光信号进行有效的放大,目前已成为通信领域内竞相开发的一种新型宽带光纤放大器,为此简单介绍了该放大器的研究历程,综述了其最新研究进展和应用情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号