首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mobile multimedia applications require networks that optimally allocate resources and adapt to dynamically changing environments. Cross-layer design (CLD) is a new paradigm that addresses this challenge by optimizing communication network architectures across traditional layer boundaries. In this article we discuss the relevant technical challenges of CLD and focus on application-driven CLD for video streaming over wireless networks. We propose a cross-layer optimization strategy that jointly optimizes the application layer, data link layer, and physical layer of the protocol stack using an application-oriented objective function in order to maximize user satisfaction. In our experiments we demonstrate the performance gain achievable with this approach. We also explore the trade-off between performance gain and additional computation and communication cost introduced by cross-layer optimization. Finally, we outline future research challenges in CLD.  相似文献   

2.
Network planning in wireless ad hoc networks: a cross-Layer approach   总被引:10,自引:0,他引:10  
In this paper, the network planning problem in wireless ad hoc networks is formulated as the problem of allocating physical and medium access layer resources or supplies to minimize a cost function, while fulfilling certain end-to-end communication demands, which are given as a collection of multicast sessions with desired transmission rates. We propose an iterative cross-layer optimization, which alternates between: 1) jointly optimizing the timesharing in the medium access layer and the sum of max of flows assignment in the network layer and 2) updating the operational states in the physical layer. We consider two objectives, minimizing aggregate congestion and minimizing power consumption, respectively, corresponding to operating in a bandwidth-limited regime and in an energy-limited regime. The end result is a set of achievable tradeoffs between throughput and energy efficiency, in a given wireless network with a given traffic pattern. We evaluate our approach quantitatively by simulations of community wireless networks and compare with designs that decouple the layers. We demonstrate that significant performance advantages can be achieved by adopting a full-fledged cross-layer optimization. Furthermore, we observe that optimized solutions generally profit from network coding, physical-layer broadcasting, and traffic-dependent physical states.  相似文献   

3.
We propose a quality-driven cross-layer optimization scheme for wireless direct sequence code division multiple access (DS-CDMA) visual sensor networks (VSNs). The scheme takes into account the fact that different nodes image videos with varying amounts of motion and determines the source coding rate, channel coding rate, and power level for each node under constraints on the available bit rate and power. The objective is to maximize the quality of the video received by the centralized control unit (CCU) from each node. However, since increasing the power level of one node will lead to increased interference with the rest of the nodes, simultaneous maximization of the video qualities of all nodes is not possible. In fact, there are an infinite number of Pareto-optimal solutions. Thus, we propose the use of the Nash bargaining solution (NBS), which pinpoints one of the infinite Pareto-optimal solutions, based on the stipulation that the solution should satisfy four fairness axioms. The NBS results in a mixed-integer optimization problem, which is solved using the particle swarm optimization (PSO) algorithm. The presented experimental results demonstrate the advantages of the NBS compared with alternative optimization criteria.  相似文献   

4.
Throughput performance of wireless networks can be enhanced by applying network coding (NC) technique based on opportunistic listening. The packets sent or overheard by a network node should be locally cached for the purpose of possible future decoding. How to manage the cache to reduce the overhead incurred in performing NC and, meanwhile, exploit performance gain is an interesting issue that has not been deeply investigated. In this paper, we present a framework for packet caching policy in multihop wireless networks, aiming at improving decoding efficiency, and thus throughput gain of NC. We formulate the caching policy design as an optimization problem for maximizing decoding utility and derive a set of optimization rules. We propose a distributed network coding caching policy (NCP), which can be readily incorporated into various existing NC architectures to improve NC performance gain. We theoretically analyze the performance improvement of NCP over completely opportunistic NC (COPE). In addition, we use simulation experiments based on ns‐2 to evaluate the performance of NCP. Numerical results validate our analytical model and show that NCP can effectively improve the performance gain of NC compared with COPE. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Peer-to-peer collaboration paradigms fundamentally change the passive way wireless stations currently adapt their transmission strategies to match available resources, by enabling them to proactively influence system dynamics through exchange of information and resources. In this paper, we focus on delay-sensitive multimedia transmission among multiple peers over wireless multi-hop enterprise mesh networks. We propose a distributed and efficient framework for resource exchanges that enables peers to collaboratively distribute available wireless resources among themselves based on their quality of service requirements, the underlying channel conditions, and network topology. The resource exchanges are enabled by the scalable coding of the video content and the design of cross-layer optimization strategies, which allow efficient adaptation to varying channel conditions and available resources. We compare our designed low complexity distributed resource exchange algorithms against an optimal centralized resource management scheme and show how their performance varies with the level of collaboration among the peers. We measure system utility in terms of the multimedia quality and show that collaborative approaches achieve ~50% improvement over non-collaborative approaches. Additionally, our distributed algorithms perform within 10% system utility of a centralized optimal resource management scheme. Finally, we observe 2-5 dB improvement in decoded PSNR for each peer due to the deployed cross-layer strategy  相似文献   

6.
This paper proposes a cross-layer optimization framework for the wireless sensor networks. In a wireless sensor network, each sensor makes a local observation of the underlying physical phenomenon and sends a quantized version of the observation to a central location via wireless links. As the sensor observations are often partial and correlated, the network performance is a complicated and nonseparable function of individual data rates at each sensor. In addition, due to the shared nature of wireless medium, nearby transmissions often interfere with each other. Thus, the traditional "bit-pipe" model for network link capacity no longer holds. This paper deals with the joint optimization of source quantization, routing, and power control in a wireless sensor network. We follow a separate source and channel coding approach and show that the overall network optimization problem can be naturally decomposed into a source coding subproblem at the application layer and a wireless power control subproblem at the physical layer. The interfaces between the layers are precisely the dual optimization variables. In addition, we introduce a novel source coding model at the application layer, which allows the efficient design of practical source quantization schemes at each sensor. Finally, we propose a dual algorithm for the overall network optimization problem. The dual algorithm, when combined with a column- generation method, allows an efficient solution for the overall network optimization problem.  相似文献   

7.
In this paper, first, we propose Star-NC, a new network coding (NC) scheme for multiple unicast sessions in an n-input n-output star structure. Then, we evaluate the network throughput of this coding scheme in wireless mesh network over the traditional non-NC transmission. Our scheme benefits from the proximity of all the nodes around the relay node and employs a more general form of overhearing different from other schemes such as COPE. We found that the gain of our NC scheme depends on both the star size and the routing pattern of the unicast transmissions. Based on this, we identify both the situations which the maximum gain is achievable and a lower bound for the expected value of the gain in the case of random routing pattern. Next, we propose an analytical framework for studying throughput gain of our Star-NC scheme in general wireless network topologies. Our theoretical formulation via linear programming provides a method for finding source-destination routes and utilizing the best choices of our NC scheme to maximize the throughput. Finally, we evaluate our model for various networks, traffic models and routing strategies over coding-oblivious routing. We also compare the throughput gain of our scheme with COPE-type NC scheme. We show that Star-NC exploits new coding opportunities different from COPE-type NC and thus can be used with or without this scheme. The results show that Star-NC has often better performance than COPE for a directional traffic model which is a typical model in wireless mesh networks. Moreover, we found that, joint Star and COPE-type NC has better throughput performance than each of Star or COPE alone.  相似文献   

8.
We consider a wireless sensor network with energy constraints. We model the energy consumption in the transmitter circuit along with that for data transmission. We model the bottom three layers of the traditional networking stack - the link layer, the medium access control (MAC) layer, and the routing layer. Using these models, we consider the optimization of transmission schemes to maximize the network lifetime. We first consider the optimization of a single layer at a time, while keeping the other layers fixed. We make certain simplifying assumptions to decouple the layers and formulate optimization problems to compute a strategy that maximizes the network lifetime. We then extend this approach to cross-layer optimization of time division multiple access (TDMA) wireless sensor networks. In this case, we construct optimization problems to compute the optimal transmission schemes to an arbitrary degree of accuracy and efficiently. We then consider networks with interference, and propose methods to compute approximate solutions to the resulting optimization problems. We give numerical examples that illustrate the computational approaches as well as the benefits of cross-layer design in wireless sensor networks.  相似文献   

9.
There is growing interest in employing ultra-wideband (UWB) communication systems at the physical layer for multihop wireless networks. Recent efforts show that networking problems involving UWB systems should follow a cross-layer approach with consideration at multiple layers. Due to the nonlinear nature of the optimization problem, there are very limited theoretical results for this important problem. In this paper, we address this problem by considering a UWB-based ad hoc network. We study how to maximize capacity (in the form of a data rate utility) for a set of communication sessions. Via a cross-layer approach, we formulate this utility maximization problem into a nonlinear programming (NLP) problem, which takes into consideration routing, scheduling, and power control. We develop a solution procedure based on the so-called branch-and-bound framework. Within this framework, we employ a powerful optimization technique called reformulation linearization technique (RLT). We use numerical results to validate the efficacy of this solution procedure and offer insights on UWB-based ad hoc networks. This work provides a theoretical result for the achievable performance bound for a UWB-based ad hoc network.  相似文献   

10.
The optimal and distributed provisioning of high throughput in mesh networks is known as a fundamental but hard problem. The situation is exacerbated in a wireless setting due to the interference among local wireless transmissions. In this paper, we propose a cross-layer optimization framework for throughput maximization in wireless mesh networks, in which the data routing problem and the wireless medium contention problem are jointly optimized for multihop multicast. We show that the throughput maximization problem can be decomposed into two subproblems: a data routing subproblem at the network layer, and a power control subproblem at the physical layer with a set of Lagrangian dual variables coordinating interlayer coupling. Various effective solutions are discussed for each subproblem. We emphasize the network coding technique for multicast routing and a game theoretic method for interference management, for which efficient and distributed solutions are derived and illustrated. Finally, we show that the proposed framework can be extended to take into account physical-layer wireless multicast in mesh networks  相似文献   

11.
针对无线传感器网络节点能量受限制的特点,提出基于网络编码的多径路由策略.该策略在数据传输过程当中通过增加跨层协作机制,减少对单个数据包的依赖,降低数据包重传次数,使得网络带宽得到优化,同时数据在传输路径中进行随机编码使得数据包安全传输.分析表明,该策略可以保证数据传输的有效性和安全性.  相似文献   

12.
Existing opportunistic network coding architectures (e.g., COPE) rely on pseudobroadcast to deliver a coded packet to multiple receivers in a single transmission. Only the primary receiver acknowledges the reception by MAC-layer acknowledgements (synchronous ACKs) and the other receivers receive the coded packet by overhearing and acknowledge the reception by asynchronous ACKs, which are usually piggybacked in outgoing data packets. In realistic wireless networks, this mechanism may cause unnecessary retransmissions if asynchronous ACKs are dropped due to packet losses or arrive late and thus compromise the throughput gain brought by network coding. In this paper, we propose a framework of joint rate control and code selection (ORC) to address this issue, aiming at improving the performance gain of opportunistic network coding in wireless networks. The framework of ORC consists of two mechanisms: (1) Rate control: the optimal transmission rate for coded packets is selected by formulating the rate control process as a Finite Horizon Markov Decision Process. (2) Code selection: based on the results of rate selection, the packet combination for forming the coded packet is determined. Numerical results show that ORC can substantially improve the performance gain of opportunistic network coding compared with COPE.  相似文献   

13.
In this paper, we consider the problem of video transmission over wireless generalized multicarrier code division multiple access (GMC-CDMA) systems. Such systems offer deterministic elimination of multiple access interference. A scalable video source codec is used and a multirate setup is assumed, i.e., each video user is allowed to occupy more than one GMC-CDMA channels. Furthermore, each of these channels can utilize a different number of subcarriers. We propose a cross-layer optimization method to select the source coding rate, channel coding rate, number of subcarriers per GMC-CDMA channel and transmission power per GMC-CDMA channel given a maximum transmission power for each video user and an available chip rate. Universal rate distortion characteristics (URDC) are used to approximate the expected distortion at the receiver. The proposed algorithm is optimal in the operational rate distortion sense, subject to the specific setup used and the approximation caused by the use of the URDC. Experimental results are presented and conclusions are drawn.  相似文献   

14.
Unlike single omnidirectional antennas, multiple antennas offer wireless ad-hoc networks potential increases in their achievable throughput and capacity. Due to recent advances in antenna technology, it is now affordable to build wireless devices with more than one antenna. As a result, multiple antennas are expected to be an essential part of next-generation wireless networks to support the rapidly emerging multimedia applications characterized by their high and diverse QoS needs. This paper develops an admission control framework that exploits the benefits of multiple antennas to better support applications with QoS requirements in wireless ad-hoc networks. The developed theory provides wireless ad-hoc networks with flow-level admission control capabilities while accounting for cross-layer effects between the PHY and the MAC layers. Based on the developed theory, we propose a mechanism that multiple antenna equipped nodes can use to control flows' admissibility into the network. Through simulation studies, we show that the proposed mechanism results in high flow acceptance rates and high network throughput utilization.  相似文献   

15.
Cross-Layer Optimized Video Streaming Over Wireless Multihop Mesh Networks   总被引:1,自引:0,他引:1  
The proliferation of wireless multihop communication infrastructures in office or residential environments depends on their ability to support a variety of emerging applications requiring real-time video transmission between stations located across the network. We propose an integrated cross-layer optimization algorithm aimed at maximizing the decoded video quality of delay-constrained streaming in a multihop wireless mesh network that supports quality-of-service. The key principle of our algorithm lays in the synergistic optimization of different control parameters at each node of the multihop network, across the protocol layers-application, network, medium access control, and physical layers, as well as end-to-end, across the various nodes. To drive this optimization, we assume an overlay network infrastructure, which is able to convey information on the conditions of each link. Various scenarios that perform the integrated optimization using different levels ("horizons") of information about the network status are examined. The differences between several optimization scenarios in terms of decoded video quality and required streaming complexity are quantified. Our results demonstrate the merits and the need for cross-layer optimization in order to provide an efficient solution for real-time video transmission using existing protocols and infrastructures. In addition, they provide important insights for future protocol and system design targeted at enhanced video streaming support across wireless mesh networks  相似文献   

16.
This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control(MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization(NUM)problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.  相似文献   

17.
移动终端多媒体业务的发展目前已经成为终端发展的必然趋势.如何在移动终端构成Ad hoc网络时有效地进行视频传输是无线网络研究的热点之一.提出了一种基于负载状况的跨层优化方案,其基本思想是结合应用层视频编码的特点和接入层的网络负载和资源的情况联合进行优化.在特定的资源下通过概率接入的方法对重要性更高的数据包进行更优先的接入.仿真结果显示,在网络处于高负载、多跳传输等场景下,提出的方案视频传输质量PSNR值提升3 dB以上.相对于传统调度算法,系统时延也可以大幅度降低.  相似文献   

18.
Ad hoc networks are characterized by limited resources (e.g. energy, bandwidth). Efficient information dissemination while avoiding excessive energy cost can be achieved through the suitable design of a network. To this end we propose an information dissemination scheme which couples epidemic dissemination with adaptive modulation and coding (AMC). The proposed scheme tunes the message forwarding probability and the coding and modulation mode in order to achieve a balance between maximum coverage over the network and minimum energy expenditure. We achieve this based on the evaluation of suitably defined indicators related to the lower network layers and exploiting information on the current status of the wireless medium. Building on established previous AMC-related work, our simulation results indicate that our scheme brings significant improvement over non-adaptive approaches, comparable with other adaptive epidemic dissemination schemes. Our findings are quite promising for adaptive epidemic-based information dissemination schemes with a strong cross-layer component.  相似文献   

19.
Evaluating a cross-layer approach for routing in Wireless Mesh Networks   总被引:2,自引:0,他引:2  
Routing in Wireless Mesh Networks is challenging due to the unreliable characteristics of the wireless medium. Traditional routing paradigms are not able to propose an efficient solution to this problem. Further, Gupta et al. demonstrated that the average throughput capacity per node of a wireless multi-hop network decreases as 1/n, where n is the number of nodes in the network. Recent studies have shown that a cross-layer approach is a promising solution to get closer to the theoretic throughput capacity bound. Cross-layer solutions have been already proposed either for specific TDMA/CDMA networks or for power-efficient routing protocols. These proposals are strongly MAC dependent, or suffer from targeting a steady state offering the best trade-off performance. In this paper, the problem we tackle in a more general context, disregarding the specific MAC and Physical layers technologies, can be formulated as follows: How to design a routing algorithm able to increase the average throughput capacity experienced by Wireless Mesh Networks? Starting from a theoretic result, we analyze the gain that a cross-layer approach can deliver, the metrics suitable to improve throughput capacity, and the power control policy that reduces interference. We take a MAC independent approach, focusing on the general characteristics of wireless links, targeting the improvement of throughput capacity in Wireless Mesh Networks. Our proposal performs path selection and power optimization based on three metrics, namely physical transmission rate, interference, and packet error rate. Performances are thoroughly analyzed and evaluated by extensive simulations, with both TCP and UDP traffic, and compared to other multi-hop routing protocols. For both kind of traffic, the simple heuristic we propose here allows to double the average throughput the network is able to route.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号