首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
构造含金属银缺陷的光子晶体模型(AB)m AGA(BA)m,利用传输矩阵法理论,通过计算机计算仿真的方式,研究了金属银缺陷对光子晶体光吸收特性的增强效应,发现当光子晶体中引入金属银缺陷后,光子晶体的光反射率和吸收率均得到增强。在400~1400 nm范围内,平均反射率增强到93.87%,平均吸收率增强到6.13%,且吸收率大小和位置可调。随着周期数m或B介质层厚度d B增大,光子晶体的光吸收率均得到增强,当m=5时吸收率高达98.72%,当d B=118.52 nm时吸收率高达99.59%,且吸收峰的位置随m增大向短波方向移动,但随d B增大向长波方向移动。随着光入射角度θ增大,光子晶体的光吸收率先增强到极大值后再逐渐减弱,且吸收峰的位置随入射角θ增大向短波方向移动。随着A介质层厚度d A增大,光子晶体的光吸收率减弱,当d A=73.22 nm时吸收率为98.72%,且吸收峰的位置随d A增大向长波方向移动。含金属银缺陷光子晶体的光吸收特性,可为新型光学吸收器、太阳能电池、滤波器和全反射器等材料研究和选择提供理论参考。  相似文献   

2.
光子晶体的吸收对光子晶体滤波器设计的影响   总被引:1,自引:0,他引:1  
刘启能 《激光杂志》2008,29(1):19-20
引入复折射率并利用特征矩阵法,研究了光子晶体的吸收对滤波通道峰值和半高宽的影响.得出:滤波通道的峰值随光子晶体的消光系数增加而迅速减小.滤波通道的半高宽随消光系数增加而增大.滤波通道的峰值和半高宽都随有吸收的光子晶体的周期数增加而迅速减小.设计光子晶体滤波器时,应选择消光系数尽可能小的材料,并且光子晶体的周期数不宜大.  相似文献   

3.
正负交替一维掺杂光子晶体缺陷模的特性   总被引:1,自引:0,他引:1  
胡莉  刘启能 《激光与红外》2009,39(7):765-768
利用光学特征矩阵方法,研究了在正负折射率交替一维光子晶体中掺入正折射率介质后缺陷模的相关特性。结果表明:当杂质层的光学厚度不变时,随着杂质层折射率的增加,缺陷模的半高宽度随之增加,分布在禁带中心两侧的缺陷模分别向临近的透射谱方向移动,并与透射谱形成连续的透射带;随着折射率的增加,透射带的透射率逐渐增加,其半高宽度逐渐减小;而当杂质层折射率不变时,随着杂质层的光学厚度增加,缺陷模向长波方向平移,同时缺陷模的个数也随之增加,而由缺陷模和透射谱连成的透射带的带宽逐渐减小。  相似文献   

4.
一维光子晶体传输特性优化设计   总被引:1,自引:0,他引:1  
本文研究了光子晶体周期堆栈的时候,输入波能够快速的衰减的条件下,一维光子晶体的传输特性。研究表明,当入射角一定时,光子晶体的填充率能够得到最好的禁带带宽和反射率:而随着入射角度的增加,光子晶体的反射率逐渐增大,反射效果更好,同时带隙宽度逐渐变大,而全能反射带宽逐渐变小,并向长波方向移动。与其它结构的光子晶体相比,这种条件下一维光子晶体利用很少的周期数,就可以得到99%以上的反射率和很宽的禁带宽度。  相似文献   

5.
一维光子晶体基本周期的介质折射率取n2=1.5和n3=2.5,采用传输矩阵法,通过For-tran编程进行数值计算,分别得到了不同周期层数(N)及不同入射角度(θ1)下的一维光子晶体透射谱;从光子带隙频宽、带隙中心位置及带隙中心的透射率值等方面,分析并讨论了周期层数及入射角对一维光子晶体带隙特性的影响。结果表明,随着N值的增加,带隙中心的透射率值迅速减小,当N增至16层时,一维光子晶体基本形成;此外,在0°~85°内,随着入射角度的增加,带隙低频值向左移动,高频值向右移动,带隙宽度呈增加的趋势,入射角不影响光子带隙的中心位置。  相似文献   

6.
准周期结构一维光子晶体的缺陷模研究   总被引:2,自引:0,他引:2  
利用传输矩阵方法,研究了光波在包含掺杂缺陷和替代缺陷的厚度渐变准周期结构一维光子晶体中的传播规律.研究结果表明,类似于传统的周期结构一维光子晶体,在准周期结构光子晶体引入缺陷,光子晶体禁带中也产生了缺陷模,并且两种缺陷所引起的缺陷模的性质基本一致;缺陷模的出现使带隙有了一定程度的加宽,而缺陷模的位置和强度与缺陷层所处的位置和缺陷层的光学厚度有关;随着缺陷层光学厚度的增大,缺陷模向长波方向移动.  相似文献   

7.
通过传输矩阵法理论,计算和研究不对称级联结构光子晶体的透射特性,结果表明:对于级联镜像对称结构光子晶体,透射谱的禁带中出现单条透射率为100%的透射峰,随着级联数目增大,单透射峰越来越精细并快速向长波方向移动,产生蓝移现象,但透射峰的透射率不变。对于不对称级联结构光子晶体,随着级联数目或级联周期不对称度增大,透射谱中单透射峰的透射率迅速下降,同时透射峰的位置随禁带缓慢向短波方向移动,产生红移现象;随着级联结构不对称度增大,透射谱中单透射峰的透射率缓慢下降,同时透射峰的位置快速向短波方向移动,产生红移现象。不对称级联结构光子晶体的透射特性,对光学滤波器、光学全反射镜和光学开关等器件的研究和设计有一定的指导价值。  相似文献   

8.
一维光子晶体的偏振特性   总被引:6,自引:2,他引:4  
刘启能 《半导体光电》2006,27(6):729-732
利用特征矩阵法研究了两种偏振光通过一维光子晶体的偏振特性.结果表明,P偏振光存在明显的"广义布儒斯特角"对应的允许带,其"广义布儒斯特角"随着入射波长的增加而减少,而S偏振光不存在"广义布儒斯特角".光子晶体的折射率对"广义布儒斯特角"出现的波长位置有较大影响,其位置随两介质层折射率之差的增加向长波方向移动.  相似文献   

9.
准周期结构一维光子晶体的带隙特性与滤波特性   总被引:6,自引:4,他引:2  
研究了准周期结构一维光子晶体的带隙特性和滤波特性,对ZnS与MgF2和GaAs与AlAs两种电介质组合的光子晶体在层厚不变、折射率递变和折射率不变、层厚递变以及层厚不变、折射率比递变三种情况下的透射谱作了模拟计算,得到了带隙特性的变化规律,并指出了其在滤波中的应用.与周期结构光子晶体相比,准周期结构光子晶体的透射谱发生移动,带隙宽度改变.  相似文献   

10.
程阳 《光电技术应用》2010,25(1):38-40,44
利用由传输矩阵法得到的一维光子晶体的反射率计算公式,针对具体的一维全息光子晶体周期结构,计算了折射率调制周期的改变以及光学厚度的改变对光子禁带结构的影响.结果表明:随着折射率调制周期参数的增大,禁带宽度减小,禁带中心的位置移向短波;随着光学厚度的增大,禁带宽度增大,禁带中心的位置移向长波.在设计光子晶体时,可以根据需要,通过改变光子晶体基本周期结构的参数来实现对光子带隙的控制.  相似文献   

11.
In order to achieve broadband and efficient optical absorption, the multiple silver nanolayer was introduced into the photonic crystals to form a one-dimensional ternary periodic symmetric structure. The effects of thickness of each layer on the band range, absorption bandwidth, absorbance and absorption energy field distribution of the solar spectrum high absorption band were studied by the transfer matrix method. The absorption band with wavelength range from 724 nm to 1 188 nm, spectral width of 464 nm, and average absorbance of 0.78 was obtained by structural adjustment. The absorbed energy is mainly distributed in the first half of the symmetrical structure of the photonic crystal. When the thickness of the silver layer decreased from 30 nm to 15 nm, the local energy in each period increased significantly. At the same time, the distribution and transfer of energy in silicon and MgF2 layers can be controlled. The results of this paper can be used to improve the absorption of solar radiation, and provide an important basis for the design of photonic crystal and their application in solar energy utilization.  相似文献   

12.
利用复折射率的方法和膜系设计软件TFcalc分别研究了入射角和杂质吸收对一维光子晶体反射镜反射谱和透射谱的影响.结果表明:随着入射角的增大,一维光子晶体反射镜的禁带中心位置蓝移,禁带宽度减小.入射角小于60°时,带隙势阱深度几乎不变,大于60°后带隙势阱深度变化较大.当入射角无限接近90°时,P偏振光的带隙几乎消失,S偏振光的带隙几乎保留.杂质吸收对于一维光子晶体的反射谱和透射谱显著影响时的临界消光系数值分别是0.001和0.0003.高折射率介质层的杂质吸收对光谱的影响较小.  相似文献   

13.
一种基于光子晶体的中远红外双波段兼容伪装材料   总被引:3,自引:0,他引:3       下载免费PDF全文
光子晶体作为一种新型人工结构功能材料,基于其光子禁带的高反射特性可以实现热红外伪装。选择红外波段透明的薄膜材料A、B,设计出在中远红外波段具有高反射禁带的光子晶体,利用薄膜光学理论的特征矩阵法计算了反射光谱。通过构造异质结构光子晶体,实现了光子带隙的展宽,该结构光子晶体基本上实现了中远红外双波段的高反射,在2.94~5.06μm和7.66~11.98μm波段的光谱反射率接近为1;在2.91~5.12μm和7.62~12.29μm波段的光谱反射率大于95%,较好地满足了中远红外双波段兼容伪装的要求。倾斜入射时光子晶体的TM波和TE波的反射光谱是不同的,随着入射角度的增加,TM波的带隙逐渐变窄,而TE波的带隙逐渐变宽。  相似文献   

14.
Compton散射下磁化等离子体光子晶体光子带隙特性   总被引:1,自引:1,他引:0  
为了研究多光子非线性Compton散射对横向磁光效应磁化等离子体光子晶体光子带隙特性的影响,采用多光子非线性Compton散射模型和时域有限差分法进行了理论分析和实验验证,取得了关于晶体色散和调制不稳定性、光子带宽变化的重要数据,并提出了将入射光和Compton散射光作为磁化等离子体光子晶体色散的新机制.结果表明,Compton散射使等离子体色散增强,耦合电磁波通带变窄、阻带变宽,有效地降低了电磁波传输中的交叉相位调制的不稳定性,频率低于等离子体频率的电磁波在等离子体中的传播几率减小.  相似文献   

15.
运用传输矩阵法推导了电磁波在一维周期性光子晶体中的传输特性,给出了光子晶体的色散关系和反射特性曲线,分析了其反射特性与结构参数的关系。并且利用计算机数值模拟了缺陷型一维光子晶体的反射谱及带隙变化规律,给出了光子晶体传感器在液体的高度测量和折射率测量方面的模拟计算,为一维缺陷态光子晶体传感器在液位测量和液体折射率测量方面的实际应用奠定了理论基础。  相似文献   

16.
根据光子晶体的电磁特性,求解麦克斯韦方程,应用传输矩阵法求解一维光子晶体中电磁波传播的透射率特性,通过改变构成一维光子晶体的层数、材料折射率和材料厚度,得到层数变化对禁带宽度变化影响不大,折射率差值增大时带隙宽度也逐渐增大,两介质厚度有一定厚度差比厚度一样时形成较宽带隙。  相似文献   

17.
用传输矩阵法推导了一维光子晶体的透射率公式,研究了[Si(30 nm)/C60(70 nm)N体系当电磁波沿z方向入射时不同周期层数的透射特性.结果表明,当周期数达16时在325~585 nm波段内的透射率基本为零且电磁波损耗最低仅为1%;而在585~825 nm波段存在多个完全透射峰,其半峰宽随波长增加而增加.改变掠...  相似文献   

18.
通过引入缺陷和色散介质方法,调控光子的运动状态,研究一种〔A(BC)〕m结构负折射率光子晶体的TE波和TM波的传输特性和色散特性,得到两种模的色散特性随入射角变化而变化规律,并且其带隙比普通光子晶体的大,而透射带要窄。通过运用传统计算电磁场与电磁波传播的FDTD方法及PML边界条件来仿真〔A(BC)〕m结构光子晶体光纤...  相似文献   

19.
三层单负材料为周期单元对称型一维光子晶体的频率特性   总被引:1,自引:1,他引:0  
应用传输矩阵法研究了以三层单负材料为周期单元对称型一维光子晶体(ABC)M(CBA)M。结果表明,其带隙结构对入射角的敏感程度与光波的偏振性有关,TE波的高频通带会随着入射角的增大向中心频率移动,而TM波的带隙结构对入射角的变化不敏感。研究还发现各介质层厚度的变化对能带结构的影响规律不相同。当保持各介质层厚度比不变,成倍增大各介质层厚度,高、低频通带变窄并向中心频率移动,低频区通带首先消失。当改变各介质层厚度比时,若保持A、C层厚度不变,减小B层厚度,高、低频通带分别向两侧移动同时收缩变窄;若保持B层厚度不变,增大A、C层厚度,高、低频区通带同样变窄,低频区通带首先消失,带隙同样变宽。最后研究了该光子晶体的零有效相位带隙结构,发现其通带随晶格常数的增大逐渐向中心频率移动同时收缩变窄,这一特性可以用来设计单通道窄带零有效相位延迟滤波器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号