首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
采用5 kW横流CO2激光器对表面预涂覆HA和SiO2混合粉末的TC4钛合金激光熔覆获得低含硅量生物陶瓷涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线能谱仪(EDS)分析熔覆层的显微组织与物相成分,通过模拟体液(SBF)浸泡实验初步探讨涂层的生物活性,并通过电化学腐蚀中的动电位扫描实验研究涂层在SBF中的腐蚀行为。实验结果表明,低含硅量生物陶瓷涂层与基体呈冶金结合,在SBF中熔覆层的腐蚀电位与基材相比提高了84.4 mV,腐蚀电流密度下降了约6倍,在SBF中浸泡7天后熔覆层表面沉积了大量的类骨磷灰石,熔覆层表现出良好的耐腐蚀性和生物相容性。  相似文献   

2.
李明  汪震 《应用激光》2012,32(5):384-389
为了减少激光熔覆过程中基材与生物陶瓷涂层之间的热裂纹, 提高涂层与基材的结合强度, 设计了一种梯度稀土生物陶瓷涂层, 采用宽带激光熔覆技术,在TC4钛合金表面制备了含HA+β-TCP活性相的稀土活性梯度生物陶瓷复合涂层。利用SEM 、XRD分析手段对涂层形貌、相组成进行了研究; 通过模拟体液(SBF)浸泡实验(浸泡7 、14 d)考察了生物陶瓷涂层的生物活性; 利用电化学分析仪测试了生物活性陶瓷涂层的耐腐蚀性。结果表明, 当稀土氧化物Nd2O3添加量为w(Nd2O3)=0.6%时, 宽带激光熔覆过程中催化合成HA+β-TCP活性相的数量最多, 具有优异的表面形貌; 当稀土氧化物Nd2O3添加量为w(Nd2O3)=0.6%时, 梯度稀土生物陶瓷涂层在SBF中浸泡不同时间点后表面沉积的类骨磷灰石相数量均较未加入Nd2O3的梯度生物陶瓷涂层多, 具有最好的生物活性, 且耐腐蚀性最佳。  相似文献   

3.
宽带激光熔覆生物陶瓷梯度涂层及其生物活性   总被引:1,自引:0,他引:1  
为了消除激光熔覆过程中基材与生物陶瓷涂层之间的热应力,提高涂层与基材的结合强度,采用宽带激光熔覆技术,在Ti-6A1-4V合金表面制备含HA+β-TCP的生物陶瓷梯度涂层(HA为羟基磷灰石).利用OM、SEM和XRD对涂层形貌、相组成进行了研究,并通过体外模拟体液浸泡实验考察了涂层的生物活性.结果表明:生物陶瓷梯度涂层分为基材、合金化层以及生物陶瓷层3个层次,且各梯度层的结合界面均为良好的化学冶金结合.稀土氧化物La2O3在激光熔覆生物陶瓷过程中具有诱导合成HA-β-TCP的作用,生物陶瓷涂层的生物活性与不同La2O3含量诱导合成HA+β-TCP的数量密切相关.当La2O3含量为0.6 wt.%时,合成HA+β-TCP的数量最多.当La2O3的添加量为0.6 wt.%时,涂层表面形成的类骨磷灰石数量最多:且经14天浸泡后的涂层明显比7天形成的类骨磷灰石数量多.  相似文献   

4.
利用激光熔覆技术,在A3钢表面进行了Ni60合金添加Ta2O5的激光熔覆实验.采用静态浸泡法对相同工艺条件下获得的纯Ni60熔覆层和Ta2O5/Ni60熔覆层的耐腐蚀性进行了研究.在光学显微镜下观察样品表面腐蚀形貌,并对Ta2O5/Ni60熔覆层的腐蚀机理进行了分析.结果表明:在Ni60自熔合金粉末中加入Ta2O5,可以形成一种新的耐腐蚀体系.然而加入的Ta2O5必须有足够的量(>7wt.%),才有提高耐蚀性的作用.随着Ta2O5的加入量的增加,试样的耐腐蚀性也增加.当Ta2O5的加入量为11wt.%时,可以使耐蚀性提高20%.  相似文献   

5.
碳纳米管对Ni60激光熔覆层的耐蚀性影响   总被引:2,自引:0,他引:2  
利用自动送粉激光熔覆技术,在A3钢表面进行了Ni60合金添加碳纳米管的激光熔覆实验,采用静态浸泡法对相同工艺条件下获得的纯Ni60熔覆层和碳纳米管/镍基熔覆层的耐腐蚀性进行研究,在光学显微镜下观察样品表面腐蚀形貌,并对碳纳米管/镍基熔覆层的腐蚀机理进行了分析.结果表明:当碳纳米管的含量为0.3 wt%时,碳纳米管/镍基激光熔覆层的耐腐蚀性能最好,与纯Ni60激光熔覆层相比,耐腐蚀性提高1倍多.碳纳米管/镍基激光熔覆层耐腐蚀的原因在于熔覆层保留的碳纳米管使熔覆层更加致密,隔离了腐蚀介质,促进了镍基合金的钝化,从而提高了熔覆层的耐蚀性;同时,熔覆层中保留下来的碳纳米管和被分解的碳纳米管与金属基体形成碳化物,作为增强相均匀弥散在熔覆层中,它们的存在阻止了腐蚀坑的长大,因而蚀坑较小,耐腐蚀性得到提高.  相似文献   

6.
原位生成WB-CrB增强镍基激光熔覆层的耐蚀性研究   总被引:1,自引:0,他引:1  
采用静态浸泡法对原位生成WB-CrB增强镍基激光熔覆层的耐腐蚀性进行研究.使用扫描电镜和X射线衍射仪对熔覆层进行显徽组织和物相分析,在光学显微镜下观察样品表面腐蚀形貌.结果表明:WB-CrB增强镍基激光熔覆层(Ni60+16 wt.%(WO3/B2O3+C))在10%H2SO4(质量百分数)溶液中表现出较好的耐腐蚀性能...  相似文献   

7.
采用激光熔覆与等离子喷涂复合技术制备含氟羟基磷灰石(HA)生物陶瓷涂层,用HA、氟化钙(Ca F2)、钛(Ti)混合粉末在Ti-6Al-4V基体上用激光熔覆制备过渡层,其上以HA、Ca F2为原料用等离子喷涂技术制备富含Ca10(PO4)6Fx(OH)2-x的陶瓷层。通过对涂层样品进行拉伸实验、模拟体液(SBF)浸泡的测试并结合X射线衍射(XRD)、扫描电子显微和能谱(SEM/EDS)分析,研究了F含量对涂层物相组成、结合强度、表面形貌、生物活性的影响。结果表明:激光熔覆与等离子喷涂复合技术制备的涂层可以提高结合强度至20.1 MPa,当x=1.5时达到最大值28.4 MPa;随着x值的不断增大,涂层的结晶度提高、生物活性增强,但是涂层表面的裂纹数量增多。当x=1.0~1.5之间时涂层的综合性能最好。  相似文献   

8.
激光熔覆原位合成制备生物陶瓷涂层   总被引:4,自引:0,他引:4       下载免费PDF全文
激光熔覆直接处理CaHPO4·2H2O与CaCO3的复合粉末,制备出了羟基磷灰石(HAP)生物陶瓷涂层。结果表明,熔覆层组织为粒状的HAP分布于互相搭接的棒状β-Ca2P2O7之中,熔覆层主要物相为β-Ca2P2O7与Ca5(PO4)3(OH)。涂层与基体结合处为平界面外延生长的带状组织,熔覆层中部则为典型的胞状晶,熔覆层表面组织为粒状等轴晶,组织演化决定于激光熔覆时的温度梯度/凝固速度(G/R)的比值。  相似文献   

9.
采用静态浸泡法对原位生成TaC颗粒强化镍基激光熔覆层的耐腐蚀性进行研究.使用金相显微镜和X射线衍射仪对熔覆层进行显微组织和物相分析,在光学显微镜下观察样品表面腐蚀形貌.结果表明:含10wt%(Ta2O5, C)的TaC/Ni60镍基复合涂层在10%H2SO4溶液和10%HCl溶液中均表现出较好的耐腐蚀性能,与纯Ni60激光熔覆层相比,其相对耐蚀性提高50%.  相似文献   

10.
镍基合金熔覆层的耐腐蚀、耐磨性、硬度,是45钢零件表面技术改性的理想熔覆层。为节约45钢的成本,增加45钢零件使用寿命,研究了激光熔覆Ni35+11%wc熔覆层的组织及耐腐蚀性。采用Xrd、维氏硬度计,磨损实验,电化学腐蚀方式研究熔覆层的组织和性能。结果表明:熔覆层的主相为Fe2Ni7Si20、NiSi,与基体冶金结合良好。熔覆层的硬度值均在730 HV左右,自腐蚀电位是-0.833 V,自腐蚀电流密度是 0.981 A/m2,熔覆层tafel曲线正向偏移耐腐蚀性有所提高,熔覆层的磨擦系数低于基体。  相似文献   

11.
宽带激光熔覆梯度生物活性陶瓷复合涂层组织与性能   总被引:3,自引:2,他引:1  
为了增加基材与生物陶瓷涂层之间的结合强度,消除激光熔覆过程中基材与生物陶瓷涂层之间的开裂倾向,设计了一种梯度生物陶瓷复合涂层并采用宽带激光熔覆技术在Ti-6Al-4V合金上制备了梯度生物陶瓷复合涂层,对其组织和性能进行了研究.结果表明:钙和氧元素主要分布在生物陶瓷涂层中;钛和钒元素主要分布在基材和合金化层内;磷元素分布在合金层与陶瓷层中.合金层中基底组织上分布着白色共晶组织和白色颗粒,基底组织主要为Ti(Al,P,Fe,V)相,白色共晶组织主要为Fe2Ti4O AlV3,白色颗粒为结晶析出的Al3V0.333Ti0.666;生物陶瓷层中的基底组织为胞状晶,其上分布有灰色相和白色颗粒相,胞状晶主要为GaO、CaTiO3和HA,灰色相为β-TCP及Ca2Ti2O6,白色颗粒相为TiO2.陶瓷涂层表面形成了类珊瑚礁结构及短杆堆积结构.这种表面结构将有助于为骨细胞长入生物陶瓷涂层提供通道.陶瓷层与钛合金基体之间的结合强度大于37.3 MPa.合金层的最高硬度为1600 HV0.2,生物陶瓷涂层显微硬度最大值约为1300HV0.2.  相似文献   

12.
利用大功率CO2激光器在45钢表面激光熔覆制备Ni基WC/Cr3C2涂层。使用电子探针(EPMA)、X射线衍射仪(XRD)、扫描电镜(SEM)和M352电化学测试系统对熔覆层成分、物相组成、显微组织和耐蚀性进行研究。结果表明,Ni基WC/Cr3C2熔覆层表面光亮无裂纹,润湿性和脱渣性良好。熔覆层主要由Cr2Ni3、γ-(Fe,Ni)、Ni17W3、Fe0.64Ni0.36、WC、Cr7C3和CrSi2等物相组成。熔覆层底部为发达的树枝晶,树枝晶和枝晶间都含有大量的Fe元素;中部为γ-(Fe,Ni)基体上分布着大量长条状碳化物Cr7C3以及少量零散分布的菊花状硅化物CrSi2等强化相;顶部组织与中部相似,但晶粒更加细小致密。Ni基WC/Cr3C2熔覆层自腐蚀电位为-395.9 mV,自腐蚀电流密度为2.75μA/cm2,耐蚀性较Ni基WC涂层明显提高。  相似文献   

13.
本文研究了激光熔覆生物陶瓷涂层的耐酸、耐碱及耐生理盐液腐蚀性.结果表明,在一定激光熔覆条件下制备的稀土生物陶瓷涂层复合材料比钛合金、未加稀土的涂层材料耐腐蚀能力强.稀土涂层对基体具有保护作用,稀土在涂层熔池内对流扩散混合,弥散分布整个区域,通过细化表层晶粒,提高晶界结合力,降低化学位,来抑制酸、碱及生理盐液的腐蚀.  相似文献   

14.
Cu-Zr-Al非晶合金成分设计与激光熔覆   总被引:1,自引:0,他引:1  
在采用团簇线判据优化设计Cu-Zr-Al非晶合金成分的基础上,采用激光熔覆技术在AZ91HP镁合金表面制备了Cu-Zr-Al合金涂层。研究结果表明,合金涂层是由非晶、Cu8Zr3和Cu10Zr7相所组成。通过X射线峰位分离计算表明,随着扫描速度增加,由于熔覆区冷却速率增大,稀释度降低,致使合金涂层中非晶相的相对含量上升,其最高质量分数可达61%。同时,由于金属间化合物的增强作用随着扫描速度的增加而减弱,致使合金涂层的硬度、弹性模量、耐磨性降低,而耐蚀性增高。  相似文献   

15.
杨广峰  郜峰  崔静  薛安源 《红外与激光工程》2023,52(1):20220328-1-20220328-9
为了提升300M超高强度钢表面的耐蚀性能,在300M钢表面通过激光熔覆技术制备出四组扫描速度分别为5 mm/s,8 mm/s,11 mm/s和14 mm/s的涂层试样,通过光学显微镜、扫描电镜、X射线衍射仪、EDS能谱仪、显微硬度仪、摩擦磨损机、电化学工作站仪器分别表征涂层的宏观形貌、显微组织、物相组成、元素分布、硬度性能、摩擦磨损性能和耐腐蚀性能。结果表明,300M钢熔覆C276后,涂层的耐蚀性和硬度都得到增强,但耐磨性能较原基体变差,涂层形貌受扫描速度的影响,扫描速度越大,平整度越趋于平整,且金属光泽也逐渐加深,同时在不同参数下的涂层物相种类未发生明显变化,主相均为Ni-Cr-Co-Mo,在扫描速度8 mm/s的参数下,涂层具有最高的硬度较基体提升约36.2%,同时也具有更佳的耐蚀性能与其他力学性能。  相似文献   

16.
王永福  王毅  汪震 《应用激光》2012,32(4):323-326
针对目前生物活性陶瓷涂层存在的问题,设计了一种梯度涂层,采用宽带激光熔覆技术,通过加入不同含量的稀土氧化物Nd2O3来提高激光熔覆生物陶瓷涂层的生物相容性,在Ti-6Al-4V合金表面制备了含HA+β-TCP的稀土活性梯度陶瓷涂层。利用SEM、XRD对活性涂层组织结构进行了研究。采用体外人成骨细胞与材料共培养的方法,对梯度活性陶瓷涂层进行了细胞形态实验。结果表明:Nd2O3含量的不同,对涂层催化效果不一样,使得复合涂层呈现形态各异的表面特征,但涂层表面都具有一定的粗糙度,将增加生物陶瓷涂层与骨组织的生物相容性;稀土氧化物Nd2O3在激光熔覆生物陶瓷过程中具有催化合成HA+β-TCP的作用,当w(Nd2O3)=0.6%时,诱导合成HA+β-TCP的数量最多;含稀土氧化物Nd2O3的涂层对成骨细胞无毒副作用,当w(Nd2O3)=0.6%时染色呈正常梭形状态的细胞数目最多,具有最佳的生物相容性。  相似文献   

17.
赵亚凡  陈传忠 《激光技术》2006,30(6):614-617
羟基磷灰石(HA)是目前生物相容性最好的生物活性陶瓷。其涂层的制备方法也成为材料学科研究的热点之一。激光熔覆作为表面改性的新技术,在制备HA生物陶瓷涂层方面显示出独特的优越性,所得涂层质量明显优于其它制备技术。对激光熔覆HA涂层的组织性能特点及影响因素进行了综述,详细分析了工艺参数、反应物配比、稀土元素及梯度涂层等因素对涂层质量的影响,展望了该项技术的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号