首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
李明  汪震 《应用激光》2012,32(5):384-389
为了减少激光熔覆过程中基材与生物陶瓷涂层之间的热裂纹, 提高涂层与基材的结合强度, 设计了一种梯度稀土生物陶瓷涂层, 采用宽带激光熔覆技术,在TC4钛合金表面制备了含HA+β-TCP活性相的稀土活性梯度生物陶瓷复合涂层。利用SEM 、XRD分析手段对涂层形貌、相组成进行了研究; 通过模拟体液(SBF)浸泡实验(浸泡7 、14 d)考察了生物陶瓷涂层的生物活性; 利用电化学分析仪测试了生物活性陶瓷涂层的耐腐蚀性。结果表明, 当稀土氧化物Nd2O3添加量为w(Nd2O3)=0.6%时, 宽带激光熔覆过程中催化合成HA+β-TCP活性相的数量最多, 具有优异的表面形貌; 当稀土氧化物Nd2O3添加量为w(Nd2O3)=0.6%时, 梯度稀土生物陶瓷涂层在SBF中浸泡不同时间点后表面沉积的类骨磷灰石相数量均较未加入Nd2O3的梯度生物陶瓷涂层多, 具有最好的生物活性, 且耐腐蚀性最佳。  相似文献   

2.
宽带激光熔覆生物陶瓷梯度涂层及其生物活性   总被引:1,自引:0,他引:1  
为了消除激光熔覆过程中基材与生物陶瓷涂层之间的热应力,提高涂层与基材的结合强度,采用宽带激光熔覆技术,在Ti-6A1-4V合金表面制备含HA+β-TCP的生物陶瓷梯度涂层(HA为羟基磷灰石).利用OM、SEM和XRD对涂层形貌、相组成进行了研究,并通过体外模拟体液浸泡实验考察了涂层的生物活性.结果表明:生物陶瓷梯度涂层分为基材、合金化层以及生物陶瓷层3个层次,且各梯度层的结合界面均为良好的化学冶金结合.稀土氧化物La2O3在激光熔覆生物陶瓷过程中具有诱导合成HA-β-TCP的作用,生物陶瓷涂层的生物活性与不同La2O3含量诱导合成HA+β-TCP的数量密切相关.当La2O3含量为0.6 wt.%时,合成HA+β-TCP的数量最多.当La2O3的添加量为0.6 wt.%时,涂层表面形成的类骨磷灰石数量最多:且经14天浸泡后的涂层明显比7天形成的类骨磷灰石数量多.  相似文献   

3.
王永福  王毅  汪震 《应用激光》2012,32(4):323-326
针对目前生物活性陶瓷涂层存在的问题,设计了一种梯度涂层,采用宽带激光熔覆技术,通过加入不同含量的稀土氧化物Nd2O3来提高激光熔覆生物陶瓷涂层的生物相容性,在Ti-6Al-4V合金表面制备了含HA+β-TCP的稀土活性梯度陶瓷涂层。利用SEM、XRD对活性涂层组织结构进行了研究。采用体外人成骨细胞与材料共培养的方法,对梯度活性陶瓷涂层进行了细胞形态实验。结果表明:Nd2O3含量的不同,对涂层催化效果不一样,使得复合涂层呈现形态各异的表面特征,但涂层表面都具有一定的粗糙度,将增加生物陶瓷涂层与骨组织的生物相容性;稀土氧化物Nd2O3在激光熔覆生物陶瓷过程中具有催化合成HA+β-TCP的作用,当w(Nd2O3)=0.6%时,诱导合成HA+β-TCP的数量最多;含稀土氧化物Nd2O3的涂层对成骨细胞无毒副作用,当w(Nd2O3)=0.6%时染色呈正常梭形状态的细胞数目最多,具有最佳的生物相容性。  相似文献   

4.
赵亚凡  陈传忠 《激光技术》2006,30(6):614-617
羟基磷灰石(HA)是目前生物相容性最好的生物活性陶瓷。其涂层的制备方法也成为材料学科研究的热点之一。激光熔覆作为表面改性的新技术,在制备HA生物陶瓷涂层方面显示出独特的优越性,所得涂层质量明显优于其它制备技术。对激光熔覆HA涂层的组织性能特点及影响因素进行了综述,详细分析了工艺参数、反应物配比、稀土元素及梯度涂层等因素对涂层质量的影响,展望了该项技术的应用前景。  相似文献   

5.
使用HA粉末通过激光熔覆的方法在纯钛表面制备羟基磷灰石(HA)涂层,并对涂层的物相组成、成分分布和微观结构进行了研究.研究发现激光熔覆过程中,HA在高温下会发生分解生成α-Ca3(PO4)2、β-Ca3(PO4)2和CaO.这些分解产物分布于涂层的表层,形成了具有一定生物活性的生物陶瓷层.同时HA还能与Ti之间发生反应...  相似文献   

6.
宽带激光熔覆梯度生物活性陶瓷复合涂层组织与性能   总被引:3,自引:2,他引:1  
为了增加基材与生物陶瓷涂层之间的结合强度,消除激光熔覆过程中基材与生物陶瓷涂层之间的开裂倾向,设计了一种梯度生物陶瓷复合涂层并采用宽带激光熔覆技术在Ti-6Al-4V合金上制备了梯度生物陶瓷复合涂层,对其组织和性能进行了研究.结果表明:钙和氧元素主要分布在生物陶瓷涂层中;钛和钒元素主要分布在基材和合金化层内;磷元素分布在合金层与陶瓷层中.合金层中基底组织上分布着白色共晶组织和白色颗粒,基底组织主要为Ti(Al,P,Fe,V)相,白色共晶组织主要为Fe2Ti4O AlV3,白色颗粒为结晶析出的Al3V0.333Ti0.666;生物陶瓷层中的基底组织为胞状晶,其上分布有灰色相和白色颗粒相,胞状晶主要为GaO、CaTiO3和HA,灰色相为β-TCP及Ca2Ti2O6,白色颗粒相为TiO2.陶瓷涂层表面形成了类珊瑚礁结构及短杆堆积结构.这种表面结构将有助于为骨细胞长入生物陶瓷涂层提供通道.陶瓷层与钛合金基体之间的结合强度大于37.3 MPa.合金层的最高硬度为1600 HV0.2,生物陶瓷涂层显微硬度最大值约为1300HV0.2.  相似文献   

7.
激光熔覆是一种先进的表面改性技术,具有对基体材料热影响区作用小、组织细密和基体的变形程度小等特点,被广泛应用于再制造领域。稀土元素能够改善镍基合金涂层组织,使熔覆层晶粒细小,同时净化晶界。总结稀土氧化物在激光熔覆镍基合金涂层研究中的进展,概述稀土氧化物的种类和性质,结合稀土氧化物的作用机制研究其对镍基合金涂层的晶粒尺寸、稀释率、裂纹的影响,分析涂层硬度、耐磨性、耐蚀性、抗氧化性等性能,同时讨论其对涂层中硬质相的影响。最后对目前阶段稀土氧化物对激光熔覆镍基合金涂层研究中存在的问题和未来的发展方向进行了展望。  相似文献   

8.
激光表面熔覆制备纳米结构涂层的研究进展   总被引:9,自引:1,他引:8  
激光表面熔覆制备纳米结构涂层是一种新型的纳米表面涂层技术.综述了国内外近年来激光熔覆制备纳米结构涂层的研究进展.从熔覆对象的角度介绍了激光熔覆制备纳米结构涂层的主要技术,熔覆对象可分为纳米粉末和预制纳米结构涂层.而纳米粉末主要有纯纳米粉末、纳米/微米混合粉末和构造纳米粉末等;预制纳米结构涂层可分为热喷涂纳米结构涂层、纳米复合镀层以及溶胶一凝胶(sol-gel)纳米结构涂层等.阐述了激光熔覆制备纳米结构涂层存在的主要问题,并提出了当前的主要发展趋势:激光熔覆原位生成纳米结构涂层、激光熔覆纳米/微米构造复合粉末以及激光熔覆制备纳米结构涂层过程的数值模拟等.  相似文献   

9.
激光熔覆技术研究现状及其发展   总被引:8,自引:1,他引:7  
在简要阐释激光熔覆技术工作原理和技术特点的基础上,介绍了激光熔覆材料体系、工艺种类、工艺参数和涂覆层微观组织结构,另外讨论了激光熔覆技术所面临的主要问题,并提出了激光熔覆技术的发展趋势。重点介绍了所做的一些相关工作:激光熔覆MCrAlY涂层、激光熔覆纳米涂层、激光熔覆过程中热力耦合有限元数值模拟、激光熔覆过程裂纹形成机理及控制、激光熔覆纳米陶瓷颗粒增强金属基梯度涂层以及激光多层熔覆大厚度纳米热障陶瓷涂层成型控制等。  相似文献   

10.
采用同轴送粉与压片预置激光熔覆工艺制备NiCoCrAlY涂层, 对两种激光熔覆工艺粉末利用率、涂层稀释率、熔覆层硬度及熔覆层微观组织形貌进行了比较。结果表明, 在涂层界面能形成良好冶金结合的优选工艺参数条件下, 同轴送粉激光熔覆粉末利用率和加工参数密切相关, 最高不超过0.4, 而压片预置激光熔覆粉末利用率高于0.9; 同轴送粉激光熔覆制备涂层熔合区为垂直于界面的柱状晶, 上部为均匀的等轴晶, 压片预置激光熔覆涂层的枝状晶贯穿整个涂层; 但是压片预制熔覆涂层的硬度略低于同轴送粉熔覆涂层。  相似文献   

11.
为提高医用TC4钛合金表面熔覆羟基磷灰石(HA)涂层的植入稳定性和生物活性,采用激光熔覆方法制备出不同含硅量的CaP生物陶瓷涂层。利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)表征了熔覆层组织形貌和物相组成。结果表明:添加SiO2(1wt.%、3wt.%)后形成Ca2SiO4相,熔覆层中部组织细化。通过电化学腐蚀和体外SBF浸泡实验研究了SiO2含量对涂层耐腐蚀性和生物活性的影响。电化学腐蚀结果表明:随着SiO2含量的增大,涂层表面腐蚀电流密度逐渐减小;体外SBF浸泡结果表明:添加SiO2可以加快涂层表面类骨磷灰石的形成,其中,添加SiO2为1wt.%时涂层表面类骨磷灰石呈均匀分布。因此,低含量SiO2可以提高生物陶瓷涂层的耐腐蚀性和生物活性。  相似文献   

12.
激光熔覆生物陶瓷涂层和界面的研究   总被引:2,自引:0,他引:2  
采用公认的具有生物相容性和生物活性的生物陶瓷羟基磷灰石(HA)、磷酸钙(TCP)等钙磷材料改善金属材料钛合金TC4的表面生物学性能。先用高能激光束辐射预置于钛表面的陶瓷粉末,在金属表面原位合成生物陶瓷成分,再用X-ray表征了涂层材料,测定了涂层与界面的结合强度。结果表明:获得的涂层的成分为生物陶瓷成分,其中的主要成分为羟基磷灰石(HA),涂层与基材获得的界面强度达到42.96Mpa,界面有较好的改善。  相似文献   

13.
激光熔覆HA生物陶瓷梯度涂层的微观组织结构   总被引:6,自引:1,他引:6  
利用激光熔覆的方法在纯钛表面制备了羟基磷灰石(HA)生物陶瓷梯度涂层,通过电子探针和X射线衍射仪(XRD)对不同工艺参数下制备的涂层进行了微观组织观察和物相分析。实验结果表明,当激光功率为600W,扫描速度为3.5mm/s时,在纯钛表面可获得组织致密结合形态好的HA生物陶瓷梯度涂层,涂层的组织为胞枝晶和枝状晶,与人体骨组织的结构相似,主要由生物活性较好的HA相以及α—Ca2P2O7,Ca2(PO4)2等钙磷相组成,涂层下部的Ca,P的原子比例与HA中的Ca,P的原子比例相当,涂层表面因P的丢失而使其比例略高。随着功率的提高,涂层组织出现了少量的微孔,微孔的出现有利于骨组织在其上面植入生长,但涂层中Ca,P的原子比例升高,涂层的生物活性降低。随着扫描速度的加快,涂层熔化不充分,组织疏松,强度降低,影响了其使用。  相似文献   

14.
为增强1Cr18Ni9Ti不锈钢零件的硬度及耐磨性,采用激光熔覆技术在其表面制备Co基合金熔覆层。利用光学显微镜,分析了熔覆层的微观组织;应用显微硬度计测试了熔覆层的硬度;应用浓度为2%的硝酸溶液做腐蚀剂,测试了熔覆层的耐腐蚀性。并与等离子热喷涂、Ni基合金熔覆等其它表面改性技术进行比较,结果表明:1Cr18Ni9Ti不锈钢柱塞Co基合金激光熔覆层硬度达到HV520,具有较好的耐磨性,其抗酸腐蚀性能也达到检验标准要求。  相似文献   

15.
CeO2对激光熔覆Ni60合金涂层组织及性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究稀土元素CeO2对激光熔覆涂层性能的影响,以45#钢为基体、Ni60和Ni60+CeO2粉末为熔覆材料,采用激光熔覆多道搭接工艺制备了含不同含量稀土氧化物的熔覆层。通过对熔覆层着色探伤、显微组织观察、显微硬度测定的试验,分析不同含量的稀土氧化物对熔覆层表面裂纹数量、显微组织、硬度的影响规律。结果表明,CeO2的最佳掺杂质量分数为0.004;适量稀土元素CeO2的掺杂,可使熔覆涂层裂纹数量减少,熔覆层的显微组织更加均匀而细小;熔覆涂层表面显微硬度远高于基体,维氏硬度是基体的3.6倍,搭接区域硬度值是基体的3倍左右。这表明稀土元素的添加可以抑制裂纹、细化晶粒,并在一定程度上提高熔覆层硬度。  相似文献   

16.
以Ni、Si元素粉末为原料,利用激光熔覆技术在A3钢表面制得了Ni_(31)Si_(12)/FeNi金属硅化物复合材料涂层。分析了该涂层显微组织,采用测定阳极极化曲线的方法评价了该涂层在0.5mol/l H_2SO_4水溶液中的耐蚀性能,考察了添加少量合金元素Cr对涂层耐酸腐蚀性能的影响。结果表明:激光熔覆Ni_(31)Si_(12) /12/FeNi金属硅化物复合材料涂层组织由带状Ni31Si12初生相及带间FeNi/Ni_(31)Si_(12)/12共晶组成,涂层表面平整、组织细小、与基体间为完全冶金结合;涂层组织显微硬度在HV650—75O之间,沿层深分布均匀;涂层组织组成相Ni_(31)Si_(12)/FeNi本身具有良好的耐酸腐蚀性能,具有快速凝固成分均匀的显微组织,激光熔覆Ni_(31)Si_(12)//FeNi金属硅化物复合材料涂层在H_2SO_4水溶液中表现出良好的耐蚀性。合金元素Cr的添加进一步提高了涂层的耐酸腐蚀性能。  相似文献   

17.
医用镁合金激光制备羟基磷灰石涂层研究   总被引:1,自引:0,他引:1  
为了提高医用镁合金的表面耐蚀性和生物相容性,采用激光技术在镁合金表面制备羟基磷灰石(HA)涂层.研究主要采用如下两种方法制备HA涂层:激光熔覆法;等离子喷涂+激光重熔法.研究结果表明,由于镁合金和HA的物化差异较大,采用激光熔覆法所制备的涂层为不连续的泪珠状,成型非常困难,涂层中镁稀释较大,严重影响涂层的耐蚀性和生物相容性;然而采用等离子喷涂+激光重熔处理则较易在镁合金表面制备HA涂层,涂层连续且无剥落,相组成为生物相容性较好的HA和少量的Ca_3(PO_4)_2(TCP),涂层表面存在一些有利于骨长入的裂纹和孔隙.所以,采用等离子喷涂+激光重熔能够在医用镁合金表面制备生物相容性和耐蚀性较好的HA涂层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号