首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent past, along with other sectors, the telecommunication sector has grown enormously that have significant effects both on power expenditure and environmental hazards. Therefore, this paper presents the comprehensive overview about the energy efficiency and green communication. This paper summarizes the efforts that have been made in attaining green wireless communication in the perspective of radio resource management. The key interest in carrying this survey is to indicate those areas for the research that can be flourished more while attaining our goal of green wireless communication. In this article, basic concepts of energy-efficient communications are first introduced and then existing fundamental works and advanced techniques for energy efficiency are summarized, including information-theoretic analysis, OFDMA networks, MIMO techniques, relay transmission, and wireless resource allocation. Some of the important areas in energy-efficient design are also identified for future research.  相似文献   

2.
Quality-driven cross-layer optimized video delivery over LTE   总被引:2,自引:0,他引:2  
3GPP Long Term Evolution is one of the major steps in mobile communication to enhance the user experience for next-generation mobile broadband networks. In LTE, orthogonal frequency- division multiple access is adopted in the downlink of its E-UTRA air interface. Although cross-layer techniques have been widely adopted in literature for dynamic resource allocation to maximize data rate in OFDMA wireless networks, application-oriented quality of service for video delivery, such as delay constraint and video distortion, have been largely ignored. However, for wireless video delivery in LTE, especially delay-bounded real-time video streaming, higher data rate could lead to higher packet loss rate, thus degrading the user-perceived video quality. In this article we present a new QoS-aware LTE OFDMA scheduling algorithm for wireless real-time video delivery over the downlink of LTE cellular networks to achieve the best user-perceived video quality under the given application delay constraint. In the proposed approach, system throughput, application QoS constraints, and scheduling fairness are jointly integrated into a cross-layer design framework to dynamically perform radio resource allocation for multiple users, and to effectively choose the optimal system parameters such as modulation and coding scheme and video encoding parameters to adapt to the varying channel quality of each resource block. Experimental results have shown significant performance enhancement of the proposed system.  相似文献   

3.
In this paper the problem of seamless mobility and proficient joint radio resource management over an all-IP internetworked wireless heterogeneous environment is addressed. Nodes’ autonomicity is envisioned as the enabler to devise a Quality of Service (QoS) aware architecture for supporting a variety of services, founded on a common utility based framework that provides enhanced flexibility in reflecting different access networks’ type of resources and diverse QoS prerequisites, under a unified QoS-aware resource allocation optimization problem. This allows a more in-depth intrinsic wireless network convergence, beyond All-IP, driven by QoS-oriented resource management. This vision is demonstrated and instantiated for integrated WLAN and cellular (both CDMA and OFDMA) networks, providing a viable path towards the evolution and realization of the future wireless networking paradigm. Initial numerical results demonstrate the effectiveness of the proposed architecture and reveal the benefits of such a service oriented paradigm against other existing access oriented autonomic designs.  相似文献   

4.
For wireless mobile multihop relay (MMR) networks, we have chosen orthogonal frequency division multiple access (OFDMA) and time division duplex as a multiple access scheme and a duplex communication technique, respectively. We have also selected nontransparent relay stations (nt‐RSs) as relay nodes to extend the MMR network coverage. Through the nt‐RSs, far‐off subscriber stations (SSs) or hidden SSs can communicate with a base station (BS) that is connected to backhaul networks. In these MMR networks, the way in which a BS and nt‐RSs use OFDMA resources (e.g., OFDMA symbols and subcarriers) and share them might reduce system capacity and network throughput. Therefore, we proposed a new adaptive OFDMA frame structure for both the BS and the nt‐RSs. The proposed scheme is the first approach that incorporates the adaptive technique for wireless MMR networks. Based on the proposed adaptive OFDMA frame structure, an adaptive OFDMA resource allocation for SSs within a BS as well as nt‐RSs was proposed. To derive the maximum OFDMA resource that nt‐RSs can be assigned and to synchronize access zones and relay zones between a superior station and its subordinate nt‐RSs, three properties are introduced: a data relay property, a maximum balance property, and a relay zone limitation property. In addition, we propose max‐min and proportional fairness schemes of the proposed adaptive frame structure. Our numerical analysis and simulations show that the proposed OFDMA allocation scheme performs better than the nonadaptive allocation scheme in terms of network throughput and fairness especially in the asymmetric distribution of subscriber stations between access zones and relay zones in the MMR networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Yonghoon Choi 《ETRI Journal》2014,36(6):953-959
This paper studies the uplink resource allocation for multiple radio access (MRA) in reconfigurable radio systems, where multiple‐input and multiple‐output (MIMO) multicarrier‐code division multiple access (MC‐CDMA) and MIMO orthogonal frequency‐division multiple access (OFDMA) networks coexist. By assuming multi‐radio user equipment with network‐guided operation, the optimal resource allocation for MRA is analyzed as a cross‐layer optimization framework with and without fairness consideration to maximize the uplink sum‐rate capacity. Numerical results reveal that parallel MRA, which uses MC‐CDMA and OFDMA networks concurrently, outperforms the performance of each MC‐CDMA and OFDMA network by exploiting the multiuser selection diversity.  相似文献   

6.
研究了基于OFDMA多址技术的无线多跳中继网络上行链路资源分配问题。首先,在最大发射功率等约束条件下,建立了多小区OFDMA无线多跳中继网络上行链路的资源分配优化模型。将非合作博弈论和定价机制引入后,该优化问题可转化为在每个子信道上独立地进行功率分配。基于非合作博弈的功率分配模型中的纳什均衡点的存在性和唯一性得到了证明,并给出了具体的分布式求解算法。仿真结果表明,所提算法能在大幅减少系统总发射功率的情况下,有效地提升系统吞吐量,达到较高的能效比。  相似文献   

7.
In this paper, we propose a joint resource allocation, routing, and connection admission control (CAC) scheme for uplink transmission in orthogonal frequency division multiple access (OFDMA) relay networks with cooperative relaying. For cooperative relaying, relay station can relay uplink data from mobile station (MS) to base station with cooperation of the MS using transmit diversity. Transmit diversity can be achieved by virtual MISO via distributed space–time coding. The proposed scheme jointly allocates OFDMA resources and selects path for each user with CAC to maximize the upink throughput of cooperative OFDMA relay networks. The basic OFDMA resource unit is considered as a resource element which is one subcarrier over one OFDMA symbol. An efficient multi-choice multi-dimensional knapsack (MMKP) algorithm is presented for the proposed scheme. The proposed MMKP algorithm provides a unified framework which is applicable to OFDMA networks with and without cooperative relaying. We evaluate the performance of the proposed scheme with and without cooperative relaying in a hilly terrain with heavy tree density by using OPNET-based simulation. We show that the cooperative relaying improve the uplink system throughput compared with non-cooperative relaying, and the proposed scheme outperforms the conventional link quality-based scheme in both cooperative and non-cooperative relay networks.  相似文献   

8.
The IEEE 802.16e world interoperability for microwave access (WiMax) system plays an important role in the future wireless metropolitan area network (WMAN). Orthogonal frequency division multiple access (OFDMA), adopted in the IEEE 802.16 e WiMax system, has many advantages in the physical layer, but also poses many challenges for radio resource allocation. One of interesting radio resource allocation issue in the OFDMA system is to partition the overall radio resource (bandwidth and time duration) into two portions: one for random access and the other for connection-oriented access. In the IEEE 802.16 e WiMax system, a truncated binary backoff algorithm is adopted to resolve the contention in random access, while the time-division OFDMA is used for the connection-oriented access. The main contribution of this paper is to design an analytical approach to determine the optimal amount of reserved radio resource in both time and frequency domains for random access, with the objective of maximizing the overall efficiency of radio resource while satisfying the delay requirements for supporting real-time services. Furthermore, an analytical model for calculating the access latency and the efficiency of the reserved radio resources is developed.  相似文献   

9.
Telecommunication Systems - Interference is the main source of capacity limitation in wireless networks. In some medium access technologies in cellular networks, such as OFDMA, the allocation of...  相似文献   

10.
The problem of the simultaneous multi-user resource allocation algorithm in orthogonal frequency division multiple access (OFDMA) based systems has recently attracted significant interest. However, most studies focus on maximizing the system throughput and spectral efficiency. As the green radio is essential in 5G and future networks, the energy efficiency becomes the major concern. In this paper, we develop four resource allocation schemes in the downlink OFDMA network and the main focus is on analyzing the energy efficiency of these schemes. Specifically, we employ the advanced multi-antenna technology in a multiple input-multiple output (MIMO) system. The first scheme is based on transmit spatial diversity (TSD), in which the vector channel with the highest gain between the base station (BTS) and specific antenna at the remote terminal (RT) is chosen for transmission. The second scheme further employs spatial multiplexing on the MIMO system to enhance the throughput. The space-division multiple-access (SDMA) scheme assigns single subcarrier simultaneously to RTs with pairwise “nearly orthogonal” spatial signatures. In the fourth scheme, we propose to design the transmit beamformers based on the zero-forcing (ZF) criterion such that the multi-user interference (MUI) is completely removed. We analyze the tradeoff between the throughput and power consumption and compare the performance of these schemes in terms of the energy efficiency.  相似文献   

11.
Next-generation wireless communications concepts and technologies   总被引:34,自引:0,他引:34  
Next-generation wireless (NextG) involves the concept that the next generation of wireless communications will be a major move toward ubiquitous wireless communications systems and seamless high-quality wireless services. This article presents the concepts and technologies involved, including possible innovations in architectures, spectrum allocation, and utilization, in radio communications, networks, and services and applications. These include dynamic and adaptive systems and technologies that provide a new paradigm for spectrum assignment and management, smart resource management, dynamic and fast adaptive multilayer approaches, smart radio, and adaptive networking. Technologies involving adaptive and highly efficient modulation, coding, multiple access, media access, network organization, and networking that can provide ultraconnectivity at high data rates with effective QoS for Next Gare are also described  相似文献   

12.
In this paper, we propose a complete radio resource management procedure for best-effort service in OFDMA systems, which improves the system fairness with graceful throughput degradation compared to the upper bound of the system throughput. By the proposed bandwidth and power allocation algorithms, the user in the worst channel environment has almost the same probability of accessing the system as the user in the best channel environment. Furthermore, a novel sub-channel allocation algorithm is proposed to exploit frequency selectivity and multi-user diversity gains simultaneously in OFDMA systems, which is able to achieve the highest system throughput given each user’s channel environment.  相似文献   

13.
User-relay assisted orthogonal frequency division multiple access (OFDMA) networks are cost-effective solutions to meet the growing capacity and coverage demands of the next generation cellular networks. These networks can be used with multiple antennas technology in order to obtain a diversity gain to combat signal fading and to obtain more capacity gain without increasing the bandwidth or transmit power. Efficient relay selection and resource allocation are crucial in such a multi-user, multi-relay and multi-antenna environment to fully exploit the benefits of the combination of user-relaying and multiple antennas technology. Thus, we propose a channel and queue aware joint relay selection and resource allocation algorithm for multiple-input single-output (MISO)-OFDMA based user-relay assisted downlink cellular networks. Since, the proposed algorithm is not only channel but also queue-aware, the system resources are allocated efficiently among the users. The proposed algorithm for the MISO-OFDMA based user-relay assisted scheme is compared to existing MISO-OFDMA based non-relaying and fixed relay assisted schemes and it is also compared with the existing single-input single-output (SISO)-OFDMA based user-relay assisted scheme. Simulation results revealed that the proposed scheme outperforms the existing schemes in terms of cell-edge users’ total data rate, average backlog and average delay.  相似文献   

14.
陈瑾平  杨绿溪 《信号处理》2011,27(12):1824-1830
正交频分多址(OFDMA)技术以其更高的频谱效率和抗多径衰落特性成为高速无线通信网络的候选标准。兼顾效率和公平性是OFDMA系统资源分配亟待解决的问题。本文研究了OFDMA系统中的无线资源分配问题,既要保证QoS用户的最小速率要求,同时“尽力而为”用户之间必须满足最小速率最大化公平性(max-min fairness)准则;该资源分配问题可以表述为一个系统总功率约束下的子载波分配和功率控制的混合离散型优化模型,这是难解的NP-hard问题,穷举搜索的代价是极其巨大的。针对该非凸模型,本文设计一个拉格朗日松弛的优化算法,该算法中采用修正的椭球算法求解对偶问题。算法具有多项式时间复杂度,且与子载波数目呈线性增长关系。仿真结果表明,该算法能近似最优地满足用户QoS及最大最小公平性要求。   相似文献   

15.
钮金鑫 《电讯技术》2024,64(1):98-105
针对现有射频能量收集网络资源分配研究局限于单个数据源场景,无法适配于多数据源网络的问题,提出了一种适用于多数据源场景的射频能量收集中继网络传输协议框架,在该框架内节点可作为源节点或中继节点传输自身数据或转发数据,并在其他节点的数据传输过程中完成射频能量收集。以协议框架为基础,分别以系统吞吐量及用户公平性为优化目标设计两种资源分配方案。仿真表明,两种方案可有效改善网络吞吐量及资源分配公平性。  相似文献   

16.
Cognitive radio makes it possible for an unlicensed user to access a spectrum opportunistically on the basis of non‐interfering to licensed users. This paper addresses the problem of resource allocation for multiaccess channel (MAC) of OFDMA‐based cognitive radio networks. The objective is to maximize the system utility, which is used as an approach to balance the efficiency and fairness of wireless resource allocation. First, a theoretical framework is provided, where necessary and sufficient conditions for utility‐based optimal subcarrier assignment and power allocation are presented under certain constraints. Second, based on the theoretical framework, effective algorithms are devised for more practical conditions, including ellipsoid method for Lagrangian multipliers iteration and Frank–Wolfe method for marginal utilities iteration. Third, it is shown that the proposed scheme does not have to track the instantaneous channel state via an outage‐probability‐based solution. In the end, numerical results have confirmed that the utility‐based resource allocation can achieve the optimal system performance and guarantee fairness. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We present a framework for quality of service provisioning over the air interfaces in future wireless networks, including 3G enhancement and 4G mobile networks. The framework is based on the paradigm of service classes, wherein each class can exhibit a characteristic behavior in terms of resource allocation over the air interface. Using this QoS framework, future wireless network operators can define their own sets of service classes, choose the preferred way of implementing the QoS behavior of these classes, and offer class-based pricing schemes. The user application can choose the service class that best suits its expectations in terms of QoS and cost of access. A class-based bandwidth scheduling scheme is described as a mechanism to implement this QoS framework over CDMA air interfaces. This scheme incorporates the paradigm of service classes, in conjunction with fair resource allocation and air interface congestion resilience, while allocating air interface bandwidth to mobile users  相似文献   

18.
The public's desire for mobile communications and computing, as evidenced by the popularity of cellular phones and laptop computers combined with the explosive demand for Internet access suggest a very promising future for wireless data services. The key to realizing this potential is the development and deployment of high-performance radio systems. In this article we describe a basic service concept, advanced cellular Internet service (ACIS), and the technologies for achieving reliable high-speed transmission to wide-area mobile and portable cellular subscribers with very high spectrum efficiency. Such a wireless service, optimized to meet the needs of a client-server model for information retrieval and Web browsing, and combined with evolutionary enhancements in second-generation technologies, can provide an attractive option for third-generation systems. The radio link design combines OFDM with transmit and receive antenna diversity and Reed-Solomon coding to overcome the link budget and dispersive fading limitations of the cellular mobile radio environment. For access, a dynamic packet assignment algorithm is proposed which combines rapid interference measurements, priority ordering, and a staggered frame assignment schedule to provide spectrum efficiencies of two-to-four times existing approaches  相似文献   

19.
In this study, we develop a fully distributed routing protocol for OFDMA‐based multihop broadband wireless access (BWA) networks such as those of IEEE 802.16j. We refer to this protocol as the DCLRRA protocol. DCLRRA is based on autonomous resource allocation schemes that we also derive in this paper. The routing protocol's selection of the proper resource allocation scheme is based on whether the relay stations (RSs) are nomadic or stationary. While we develop the autonomous resource allocation schemes, we exploit the multi‐user capabilities of the OFDMA physical layer. This allows simultaneous data transmission sessions within the same neighborhood while offering a total elimination of interference between transmitting nodes. The direct result of this strategy is increased throughput with high utilization of the communication channel. We examine our routing technique to show its performance merits through extensive simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Cooperative relay to improve diversity in cognitive radio networks   总被引:5,自引:0,他引:5  
Recent studies demonstrated that dynamic spectrum access can improve spectrum utilization significantly by allowing secondary unlicensed users to dynamically share the spectrum that is not used by the primary licensed users. Cognitive radio was proposed to promote the spectrum utilization by opportunistically exploiting the existence of spectrum ?holes.? Meanwhile, cooperative relay technology is regarded widely as a key technology for increasing transmission diversity gain in various types of wireless networks, including cognitive radio networks. In this article, we first give a brief overview of the envisioned applications of: cooperative relay technology to CRNs, cooperative transmission of primary traffic by secondary users, cooperative transmission between secondary nodes to improve spatial diversity, and cooperative relay between secondary nodes to improve spectrum diversity. As the latter is a new direction, in this article we focus on this scenario and investigate a simple wireless network, where a spectrum-rich node is selected as the relay node to improve the performance between the source and the destination. With the introduction of cooperative relay, many unique problems should be considered, especially the issue for relay selection and spectrum allocation. To demonstrate the feasibility and performance of cooperative relay for cognitive radio, a new MAC protocol was proposed and implemented in a universal software radio peripheral-based testbed. Experimental results show that the throughput of the whole system is greatly increased by exploiting the benefit of cooperative relay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号