首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
针对D2D蜂窝系统通信安全性受资源限制的问题,考虑到蜂窝链路和D2D链路的同频干扰能够为两者带来安全增益,基于此,提出一种基于安全中断概率的D2D用户接入策略。首先理论分析了蜂窝用户和D2D用户的安全中断概率,并给出了基于安全中断概率最小化的D2D用户功率优化算法。在上述分析的基础上,选择安全中断概率最小的D2D用户接入复用蜂窝用户的无线资源,同时提高D2D通信链路和蜂窝上行链路的安全性。最后,仿真结果证明了所提算法的有效性。  相似文献   

2.
在LTE系统中引入设备直传(D2D)通信技术,会因为D2D用户复用蜂窝用户资源进行通信而产生同频干扰.在现有的干扰协调与资源分配研究中,都需要基站获取各个通信链路的信道状态信息(CSI),但这样无疑会增加基站的信令负担.为减小干扰与基站的信令负担,提出了一种基于用户中断概率的干扰协调与资源分配算法,首先在保证蜂窝用户正常通信的情况下,通过限制D2D用户到基站间的距离来降低干扰;其次通过遍历所有蜂窝用户的频谱资源,选择能使D2D用户的总中断概率最低的频谱资源进行复用.仿真结果表明,所提算法能够在保证蜂窝用户正常通信的情况下,明显降低D2D用户的平均中断概率,同时还能够降低基站信令负担.  相似文献   

3.
In a cellular network it's very difficult to make spectrum resource more efficiently. Device-to-Device (D2D) technology enables new service opportunities, and provides high throughput and reliable communication while reducing the base station load. For better total performance, short-range D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. Here we argue that single-hop D2D technology can be used to further improve cellular networks performance if the key D2D radio resource management algorithms are suitably extended to support multi-hop D2D communications. Aiming to establish a new paradigm for the analysis and design of multi-hop D2D communications, We propose a radio resource allocation for multi-hop D2D routes based on interference avoidance approach in LTE-A networks. On top of that, we investigate the outage probability of D2D communication. We first introduce a new definition of outage probability by considering the maximum distance to be allowable for single-hop transmission. Then we study and analyze the outage performance of a multi-hop D2D route. We derive the general closed form expression of outage probability of the multi-hop D2D routes. The results demonstrate that the D2D radio, sharing the same resources as the cellular network, provide higher capacity compared to pure cellular communication where all the data is transmitted through the base station. They also demonstrate that the new method of calculation of D2D multi hop outage probability has better performance than classical method defined in the literature.  相似文献   

4.
For us to meet the green and reliable communication requirement by the forthcoming fifth generation mobile networks, this paper focuses on a secrecy constrained device‐to‐device (D2D) underlay massive multiple‐input multiple‐output hybrid network, where the D2D user (DU) and cellular user (CU) links are exposed to passive malicious eavesdroppers. The D2D transmitters harvest the power from the signals of dedicated power beacons (PBs), but also the ambient radio frequency (RF) interference of CUs. The signals of PBs are known previously at the receivers of both the D2D and cellular users but are not known at eavesdroppers so that it can be regarded as an artificial noise. For the interested hybrid networks, we first present an energy‐harvesting scheme based on the inversion power control where the power received at the corresponding receiver is higher than the receiver's sensitivity. Then, by modeling the locations of network elements as Poisson point process and applying stochastic geometry, we derive the sufficient probability that a typical D2D transmitter harvests sufficient energy to establish communication links. Finally, with the derived sufficient probability, we evaluate the performance of the CUs and DUs in the achievable ergodic rate and the secrecy outage probability. Both the analytical and simulated results show that precious power of network is saved because of the ambient RF interference exploited, and the secrecy of both D2D and cellular links is improved simultaneously because of the signal of PBs modeled as artificial noises at CUs and DUs.  相似文献   

5.
针对未来海量用户设备接入的物理层安全(physical layer security,PLS)应用需求,提出了一种组合非正交多址接入(non-orthogonal multiple access,NOMA)、终端直通(device-to-device,D2D)与中继协作的NOMA-D2D协作无线系统PLS模型。该模型由采用发射天线选择(transmit antenna selection,TAS)的基站、分别作为基站和D2D发射端的NOMA远端蜂窝用户、D2D接收端以及被动窃听者组成,其中的D2D发射端承担基站的 NOMA 近端用户和解码转发中继两种角色。利用高斯—切比雪夫正交定理推导两种 TAS 方案下NOMA-D2D协作无线系统的安全中断概率、非零安全容量概率以及渐近安全中断概率的近似表达式。数值计算和仿真实验验证了NOMA-D2D协作无线系统PLS性能分析的准确性;在基站总功率恒定时增大分配给远端蜂窝用户的功率能有效提升NOMA-D2D协作无线系统的PLS性能。  相似文献   

6.
中继辅助终端直通(devicetodevice,D2D)网络通过与蜂窝网络共享频谱提高D2D用户的频谱效率和蜂窝用户(cellular user,CU)的物理层安全性。为进一步改善其性能,可以在基站和D2D链路的中继节点采用天线选择以及在中继节点采用全双工技术。然而,由于存在反馈时延和移动性,用于蜂窝链路和所有D2D链路天线选择的信道状态信息(channelstateinformation,CSI)均可能是过时的,针对该场景下的物理层安全性和可靠性问题,提出一种主动窃听和过时CSI场景下基站和中继节点均采用发射天线选择的全双工中继辅助D2D网络安全模型,推导CU的中断概率、遍历容量、非零安全容量概率、安全中断概率、渐近安全中断概率的解析表达式。数值计算与仿真结果均表明,基站发射天线数、中继干扰天线数越多,CU的安全性能越好;过时的CSI会降低CU的中断性能和安全性能。  相似文献   

7.
In order to improve the secrecy performance of communication system and make efficient use of limited spectrum,overlay cognitive radio (OCR) technology was combined with non-orthogonal multiple access (NOMA) technology and the communication model was proposed,in which secondary network realized dynamic switching between assisting primary network communication and secondary network communication by sensing whether the primary user occupied the spectrum or not.Artificial noise (AN) aided technology was used in primary and secondary networks respectively to further improve the secrecy performance of the system.The secrecy performance of the system was studied by deducing the expressions of the primary and secondary network secrecy outage probability and secrecy throughput respectively.The simulation results show that the proposed cognitive cooperative NOMA communication scheme is beneficial in reducing secrecy outage probability and increasing secrecy throughput.Furthermore,the influence of AN power allocation factor on system performance is given.  相似文献   

8.
Hybrid networks, comprising a conventional cellular network overlaid with Device‐to‐Device (D2D), offer efficient way to improve system throughput. In this paper, a novel orthogonal frequency‐division multiple access channel‐assignment method is proposed for hybrid network. The proposed approach is optimal in terms of throughput and is subjected to a sensible QoS requirement, which guarantees that macrocell and D2D achieve a prescribed data rate and outage probability, respectively. Our solution consists of two phases. In the first phase, the minimum sub‐channels are allocated to the macrocell to satisfy their data rate requirements. This problem is mapped to the 0‐1 Knapsack Problem and solved by integer programming based Lagrange dual approach. In the second phase, the redundant sub‐channels are allocated to D2D pairs to maximize the throughput of D2D networks. An interference management scheme is proposed to guarantee the outage probability of D2D communications. A cluster is taken as the unit for frequency reuse among D2D pairs. The problem of clustering is mapped to the MAX k‐CUT problem in graph theory and is solved by graph‐based heuristic algorithm. Extensive simulations demonstrate the superior performance of the proposed solution compared with the existing scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers a full-duplex (FD) secure transmission scheme with aid of the artificial noise deployed at both transmitter and receiver under imperfect self-interference cancellation. The expressions of secrecy and connection outage probabilities are derived, and hence, the secrecy throughput of the proposed scheme is evaluated. The results show that the performance of the proposed FD scheme outperforms that of conventional half-duplex and FD receiver schemes in terms of the secrecy outage probability. In addition, the proposed FD scheme can achieve high secrecy throughput under various locations of the eavesdropper. Especially when the eavesdropper is located close to the transmitter, the secrecy throughput of the proposed FD scheme is nearly double that of the half-duplex scheme with artificial noise injection while that of the scheme with FD jamming receiver goes to zero.  相似文献   

10.
A new design of secure nonorthogonal multiple access (NOMA) deployed together with cooperative relaying network is investigated in two modes including direct link and relay link. This paper proposes a mathematical analysis under secrecy considerations of a downlink two‐user NOMA systems. In particular, physical layer security of NOMA is studied in two specific metrics to achieve secure performance analysis such as the secrecy outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC). It should be further explored the situation as the illegal user which is assumed to be eavesdropper at the information level, it attempts to decode the information intended to legal users while NOMA scheme is employed for legal users. The transmission techniques of NOMA equipping relaying architecture (dual‐hop transmission) have proposed due to improving the spectrum efficiency greatly compared with the traditional single‐hop networks. Finally, this study shows the advantages of NOMA over the traditional orthogonal multiple access in the studied problems analytically and numerical analysis is further provided. As important achievement, new exact and closed‐form expressions of the SOP and SPSC are derived, and they will be confirmed by simulation, ie, Monte Carlo simulations are performed to verify the proposed analytical results. Ultimately, the effects of some critical factors are studied on secure performance through these simulation results.  相似文献   

11.
吴亚峰  赵睿  贺玉成  谢维波 《电子学报》2015,43(11):2247-2254
在基于有限反馈获得部分信道状态信息的条件下,研究了放大转发非可信中继系统的物理层安全传输技术.通过目的节点发送人工噪声干扰信息,使系统获得了正安全容量.推导了安全中断概率和传输中断概率的闭合表达式,分析了反馈比特数对系统安全性和可靠性的影响,进而提出了能同时兼顾系统安全性和可靠性的最优反馈比特数的自适应选择方案.  相似文献   

12.
One of the key strategies for jointly increasing throughput and optimum resource allocation in 5G is device‐to‐device (D2D) communications, which can be obtained by minimizing the outage probability considered as an objective function of optimization problem. To minimize this objective function, we found that outage probability should be modeled by jointly considering the effect of interference, noise, and multipath phenomena. In this paper, the exact formulas for outage probability of in‐band D2D communications underlying cellular network are proposed. In the proposed model, additive white Gaussian noise and Rayleigh multipath fading are considered into 2 radio resource reuse scenarios. In the first scenario, each D2D pair is allowed to reuse radio resource block of one cellular user, whereas in the second scenario, 2 resources of 2 cellular users can be reused. The proposed formulas are compared to the approximate (nonexact) ones, which models additive white Gaussian noise by a constant variance. The numerical analysis for the first and second scenarios show that the approximate formulas and respected exact ones are in accordance with simulation results in MATLAB. Moreover, based on nonorthogonal multiple access approach, 2 approximations for the nonexact and the proposed formulas are extracted, which are acceptable for multiple resource reuse scenario. As a remarkable result, simulation results show that when the distance of the D2D pair from the respected cellular user is more than 71 m (2 times greater than average distance between the D2D nodes), multiple‐reuse scenarios offer higher throughput compared to 1‐reuse scenario in an acceptable outage probability.  相似文献   

13.
吕铄  嵇建波 《电讯技术》2024,64(1):139-148
分析了认知无线电(Cognitive Radio,CR)非正交多址(Non-orthogonal Multiple Access,NOMA)网络中的物理层安全性能。考虑到现有窃听者,支持NOMA的CR通过Nakagami-m信道以解码转发协作模式传输数据。为了分析CR-NOMA物理层安全性能,通过连接中断概率和安全中断概率的闭式表达式来评估CR-NOMA的安全性能。此外,通过蒙特卡罗模拟仿真以验证推导出的分析结果,并深入分析了参数对系统性能的影响。  相似文献   

14.
Future cellular networks such as IMT‐Advanced are expected to allow underlaying direct Device‐to‐Device (D2D) communication for spectrum efficiency. However, enabling D2D communication in a cellular network presents a challenge in resource allocation because of the potentially severe interference it may cause to the cellular network by reusing the spectrum with the cellular users. In this paper, we analyze the resource allocation problem in a single cell system when both cellular users and D2D users are present in the system. We first consider the scenario where cellular users and D2D users are allocated resource independently and propose an optimal algorithm and a heuristic algorithm, and then extend the methods to the scenario where cellular users and D2D users are allocated resource jointly. The number of permitted D2D pairs is selected as a performance measure because it is a more specific performance measure than spectrum efficiency. The proposed schemes maximize the number of permitted D2D communication pairs in a system meanwhile avoiding the strong interference from D2D links to the cellular links. Finally, the performance of the proposed methods is evaluated through the numerical simulation. The simulation results show that the proposed methods enhance the number of permitted D2D communication pairs significantly and that the performance of the proposed scheme for jointly allocation scenario is better than that of the proposed scheme for independently allocation scenario. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
栾宇  李洪祚  王亚非 《中国通信》2012,9(12):108-116
Cognitive radio allows Secondary Users (SUs) to dynamically use the spectrum resource li-censed to Primary Users (PUs ), and significantly improves the efficiency of spectrum utilization and is viewed as a promising technology. In cognitive radio networks, the problem of power control is an important issue. In this paper, we mainly focus on the problem of power control for fading channels in cognitive radio networks. The spectrum sharing un-derlay scenario is considered, where SUs are al-lowed to coexist with PUs on the condition that the outage probability of PUs is below the maximum outage probability threshold limitation due to the interference caused by SUs. Moreover, besides the outage probability threshold which is defined to protect the performance of PUs, we also consider the maximum transmit power constraints for each SU. With such a setup, we emphasize the problem of power control to minimize the outage probability of each SU in fading channels. Then, based on the statistical information of the fading channel, the closed expression for outage probability is given in fading channels. The Dual-Iteration Power Control (DIPC) algorithm is also proposed to minimize the outage probability based on Perron-Frobenius theo-ry and gradient descent method under the constraint condition. Finally, simulation results are illustrated to demonstrate the performance of the proposed scheme.  相似文献   

16.
This paper considers cooperative non‐orthogonal multiple access (NOMA) scheme in an underlay cognitive radio (CR) network. A single‐cell downlink cooperative NOMA system has been considered for the secondary network, consisting of a base station (BS) and two secondary users, ie, a far user and a near user. The BS employs NOMA signaling to send messages for the two secondary users where the near user is enabled to act as a half‐duplex decode‐and‐forward (DF) relay for the far user. We derive exact expressions for the outage probability experienced by both the users and the outage probability of the secondary system assuming the links to experience independent, nonidentically distributed Rayleigh fading. Further, we analyze the ergodic rates of both the users and the ergodic sum rate of the secondary network. The maximum transmit power constraint of the secondary nodes and the tolerable interference power constraint at the primary receiver are considered for the analysis. Further, the interference caused by the primary transmitter (PT) on the secondary network is also considered for the analysis. The performance of the proposed CR NOMA network has been observed to be significantly better than a CR network that uses conventional orthogonal multiple access (OMA) scheme. The analytical results are validated by extensive simulation studies.  相似文献   

17.
基于非正交多址接入(NOMA,Non-Orthogonal Multiple Access)的认知无线电(CR,Cognitive Radio)网络物理层传输面临主用户干扰和第三方窃听双重干扰威胁.本文提出利用空时编码(STBC,Space Time Block Coding)技术提高认知用户物理层安全性能,推导了任意认知用户的安全中断概率闭合表达式.通过蒙特卡洛仿真进行验证,结果表明,所提STBC-CR-NOMA相比未采用STBC编码方案的CR-NOMA可以明显提高用户的安全中断概率,且随着认知发射功率的增大,近端用户安全中断性能提高越大,而远端用户安全中断性能提升受认知基站发射功率的影响较小.仿真结果还表明,通过调整功率分配系数对远端用户和近端用户的安全中断性能影响不同.  相似文献   

18.
The traditional cellular network cannot keep pace with the dramatic growth in data traffic due to exponentially increasing number of multimedia applications and mobile subscribers. Recently, femto base stations (FBSs) are deployed with the macro base station (MBS) tier for off‐loading the data traffic and to improve the indoor coverage of the heterogeneous cellular network. However, FBS deployment also increases the cross‐tier interference of the heterogeneous cellular network resulting in outage performance degradation of MBS tier. This work develops an analytical framework to limit the cross‐tier interference of MBS tier using power control scheme (PCS). The proposed PCS works on path loss inversion and location‐based power level rule for FBS. Moreover, a cooperation scheme and an association policy with MBS (CSAPM) are introduced to improve the outage performance of the FBS tier. Tools from the stochastic geometry are used for deriving the signal to interference and noise ratio outage probability, total outage probability, and area spectral efficiency (ASE) of MBS tier and FBS tier. Additionally, ASE maximization problem is formulated to evaluate the optimal density of FBSs. The effectiveness of the proposed PCS and CSAPM on outage performance and ASE are numerically demonstrated. It is noted from the results that the proposed CSAPM can compensate the loss in outage performance of FBS tier due to PCS. Finally, simulation results validate the analytical results.  相似文献   

19.
Although there have been many interesting works on outage performance analysis of cognitive AF relay networks, we have not found works taking into consideration all the following issues: multiple primary users (PUs), the existence of the direct link from secondary user (SU) source to SU destination, non‐identical, independent Rayleigh‐fading channels, non‐identical interference power limits of PUs, and non‐identical noise powers in signals. Additionally, in outage performance analysis for such networks, the correlation issue, which results from the channel gain of interference links from the SU nodes to the PU, requires elaborate treatments. Hence, analyzing outage performance of non‐identical‐parameter networks (where all channels are fully non‐identical Rayleigh‐fading channels, the PUs have different interference power limits, and received signals have different noise powers) from the beginning is highly complicated. To overcome this problem, we conduct the analysis in two steps. In the first step, expressions of both exact and asymptotic outage probability of identical‐parameter cognitive AF relay networks (where all channels are fully non‐identical Rayleigh‐fading channels but all other parameters are identical) are obtained. Then in the second step, we propose a method for transforming a network with all non‐identical parameters into a new identical‐parameter network, meanwhile guaranteeing that outage performance of the two networks before and after the transformation are the same. Hence, OP of the original non‐identical‐parameter network can be obtained indirectly by using the analysis results obtained in the first step. Our analysis results are validated through numerical simulations. The effects of the number of PUs and the diversity level of channel parameters (which means the range of the channel parameter values) are also inspected by simulations. The results show that taking these factors into consideration is of key importance in obtaining a more accurate estimation of outage performance of such networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The cooperative relay technique in the field of physical layer security is widely concerned by the academic community,due to the advantages of increasing the network capacity and expanding the network coverage.However,cooperative relays may play as untrusted nodes in some certain circumstances.Based on this,to enhance the secrecy performance of untrusted relay systems,a novel full-duplex destination jamming (FDJ) scheme was proposed in the Rayleigh fading channel.In order to maximize the system’s secrecy capacity,a switchable split-optimal antenna selection (OAS) scheme was proposed for a multiple-antenna destination,the power allocation optimization scheme between the source and destination was designed,and the corresponding closed-form expressions of secrecy performance were given.In the large-scale antennas analysis,the closed-form expressions of the ergodic achievable secrecy rate and the optimal power allocation factor of instantaneous secrecy capacity for the FDJ-OAS scheme were derived.Furthermore,based on different asymptotic cases,the asymptotic analyses of secrecy outage probability for the FDJ-OAS scheme were significantly analyzed.Simulation results show that the analytical curves match well with the Monte-Carlo simulation results.It is concluded that the diversity order of the FDJ-OAS scheme is proportional to the number of antennas and antenna diversity can be achieved,which reveals the advantages of the proposed FDJ-OAS scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号