首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
自Iijima发现碳纳米管以来,一维纳米材料(纳米管、纳米线、纳米棒、纳米带等)由于优异、有趣的性能,引起了人们极大的兴趣,对各种纳米材料的制备、结构、性能的研究已广泛地开展起来。SiC纳米线由于具有优越的力学、热学、电学性能和高的物理、化学稳定性、热导率、临界击穿电场、电子饱和迁移率等特性,在高温、高频、大功率、高密度集成电子器件等方面具有巨大的应用潜力,也可作为塑料、金属和陶瓷等复合材料的增强相,受到人们密切的关注。  相似文献   

2.
弯曲生长SiC纳米线的TEM表征   总被引:1,自引:0,他引:1  
由于纳米线/管/棒在力学、电学、光学等方面巨大的潜在应用价值,近年来人们投入了越来越多的兴趣来合成和表征各种一维纳米材料。其中立方结构的β-SiC纳米线帖于其优越的物理、力学性能(如高的硬度、强度、高的抗氧化和腐蚀性能、低的密度和热膨胀系数和高的热转换能力)受到广泛的关注,此外,β-SiC是一种宽带半导体材料,在高温、高频、大功率、高密度集成电子器件等方面具有巨大的应用潜力。  相似文献   

3.
由于SiC纳米线优越的力学、热学及电学性能和高的物理、化学稳定性、热导率、临界击穿电场、电子饱和迁移率等特性,一维SiC纳米线在高温、高频、大功率和高密度集成电子器件等方面具有巨大的应用潜力;也可作为塑料、金属和陶瓷等复合材料的增强相,同时也是人们研究低维材料的物理、力学性能与尺寸效应的典型材料。  相似文献   

4.
由于纳米材料所表现出的不同于体材料的特性,近年来对纳米材料的制备和表征进行了大量的研究,尤其是准一维纳米材料,如纳米线等。纳米线的性质不仅与其体材料的性质有关,而且还与其直径、长度、晶体取向和形状有关。因此有必要对纳米线的特殊形貌进行表征,从而研究纳米线的结构、形貌与性能之间的关系。  相似文献   

5.
《微纳电子技术》2006,43(7):341-341
准一维纳米材料是指在两维方向上为纳米尺度,长度为宏观尺度的新型纳米材料。如纳米棒、纳米线、半导体纳米量子线、纳米线阵列等都属于准一维纳米材料。这些新型材料的实验研究,为进一步研究纳米结构和准一维纳米材料的性能,建立准一维纳米材料的新理论和推进它们在纳米结构器件中的应用奠定了基础。  相似文献   

6.
准一维半导体纳米材料的研究进展   总被引:1,自引:0,他引:1  
探索准一维纳米结构材料的维数和尺寸,对其光学、电学和力学等性质的影响有很大的研究价值。介绍了半导体纳米棒、纳米线、纳米带等典型准一维纳米材料的一些最新研究进展,并对准一维纳米材料的研究趋势作了展望。  相似文献   

7.
近来,一维纳米材料吸引了物理学、材料学和化学界的广泛关注,成为纳米材料研究的热点。纳米线是物质在纳米尺度上的一种特殊结构,其优异的光学、电学和力学性能,在纳米器件的应用领域极具发展前景。纳米线的制备技术及物性的测量是材料在纳米原型器件制作和应用的关键,不断探索低维纳米材料的制备新技术,合成出多种材料的纳米线具有重要意义。  相似文献   

8.
王志  李方泽 《电子科技》2012,25(8):73-76
硒化锌是Ⅱ-Ⅵ族中重要的宽禁带半导体材料,其禁带宽度为2.7 eV,是理想的蓝光探测器材料。准一维ZnSe纳米结构的合成有多种,如纳米带、纳米线、纳米棒等。由于纳米材料与薄膜材料相比具有表面积大、量子效应等独特的物理及化学特性,使得基于纳米材料的纳米器件在过去的几年内被广泛的制备与研究。目前准一维ZnSe纳米材料已经制备出多种纳米器件,文中将对ZnSe纳米结构的合成以及应用作介绍。  相似文献   

9.
付新  袁俊 《电子显微学报》2011,30(4):439-443
通过透射电子显微学方法研究纳米材料内部结构有助于理解界面与缺陷对纳米材料性能的影响.在碳化硼五次孪晶纳米线体系中,为了缓解5°角度过剩引起的五次孪晶轴心区域的弹性应变能,在纳米线内部会产生一些结构缺陷.本文通过系列电子衍射分析结合暗场成像技术揭示了碳化硼五次循环孪晶纳米线中的一种结构弛豫模式.孪晶轴向纳米线边缘偏移从而...  相似文献   

10.
通过透射电子显微学方法研究纳米材料内部结构有助于理解界面与缺陷对纳米材料性能的影响。在碳化硼五次孪晶纳米线体系中,为了缓解5°角度过剩引起的五次孪晶轴心区域的弹性应变能,在纳米线内部会产生一些结构缺陷。本文通过系列电子衍射分析结合暗场成像技术揭示了碳化硼五次循环孪晶纳米线中的一种结构弛豫模式。孪晶轴向纳米线边缘偏移从而导致其中2片单晶结构单元的缺失,形成仅具有3个单晶结构单元的非完整循环孪晶结构。统计分析发现此类结构弛豫现象少量存在于1100℃固相烧结合成的碳化硼五次孪晶纳米线中,从能量角度定性分析表明这可能与该结构弛豫发生过程中会产生具有较高能量的界面及表面有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号