首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
钢中碳氮化物沉淀的晶体结构、尺寸、分布和体积分数等对其力学性能有重要影响[1]。关于Nb、V、Ti在低碳微合金钢中的析出行为及作用已经有过许多报道[2,3],但它们在高纯净钢中的行为与规律还有待进一步研究。本文对高纯净微合金钢中析出的碳氮化物进行了实验研究,并讨论了TiN在液相析出时对铸态组织的影响。实验方法实验室冶炼的高纯净钢成分为0.043%C,1.5%Mn,0.044%Nb,0.042%Ti,0.0045%N,0.0020%B,其中的O、S、P和H杂质总量小于0.0061(wt.)%。将钢锭加热到1150℃左右锻造成直径为15mm的圆棒,在扫描电镜(SEM)上观察了锻棒的纵断面…  相似文献   

2.
对普通Ti-IF钢和高强Ti+Nb+P-IF钢连退板分别进行了析出物分析与微观织构检测。结果表明:普通IF钢中有较多粗大的TiN、Ti(C,N)和Ti4C2S2析出物,形成了较强的γ纤维织构;高强IF钢中发现有许多Fe(Nb,Ti)P相析出,并弥散分布大量细小的(Nb,Ti)C析出物,促使晶粒细化,γ纤维织构减弱。  相似文献   

3.
复合添加微合金元素和控轧控冷技术在生产高强度低合金钢方面已经得到广泛的应用。特别是各阶段轧制过程中Nb、Ti碳氮化物的尺寸、数量与分布等对钢的力学性能有重要的影响。为此,作者对加热阶段钢中未溶颗粒的形貌及成分进行了研究。  相似文献   

4.
本文利用JEM—2000FX型扫描透射电镜的能量损失谱附件—EM-ASEA10型电子能量损失谱仪,在钨灯系条件下采用200Kv加速电压,对V—Ti—N微合金化钢中的微细含钛颗粒进行了分析。一、试验过程试验用钢成分为0.09G—0.13V—0.02Ti—0.01N,电镜分析用样为铸造后经1000℃×1小时正火处理的碳萃取复型。样品中含有尺寸大于0.2μm和小于50nm的两类含钛颗粒。在电镜(STEM)对中良好的条件下,选取能损谱仪(EELS)的光栏直径为2mm,并分别在选区模式和放大模式下进行分析。束斑直径选为3L。根据估计的各元素能量值的范围,合理地选择参数设置感兴趣区,然后分别对两类含钛颗粒做定点分析。采用一点定标法和两点定标法进行分析。  相似文献   

5.
宽带激光熔覆梯度生物活性陶瓷复合涂层组织与性能   总被引:3,自引:2,他引:1  
为了增加基材与生物陶瓷涂层之间的结合强度,消除激光熔覆过程中基材与生物陶瓷涂层之间的开裂倾向,设计了一种梯度生物陶瓷复合涂层并采用宽带激光熔覆技术在Ti-6Al-4V合金上制备了梯度生物陶瓷复合涂层,对其组织和性能进行了研究.结果表明:钙和氧元素主要分布在生物陶瓷涂层中;钛和钒元素主要分布在基材和合金化层内;磷元素分布在合金层与陶瓷层中.合金层中基底组织上分布着白色共晶组织和白色颗粒,基底组织主要为Ti(Al,P,Fe,V)相,白色共晶组织主要为Fe2Ti4O AlV3,白色颗粒为结晶析出的Al3V0.333Ti0.666;生物陶瓷层中的基底组织为胞状晶,其上分布有灰色相和白色颗粒相,胞状晶主要为GaO、CaTiO3和HA,灰色相为β-TCP及Ca2Ti2O6,白色颗粒相为TiO2.陶瓷涂层表面形成了类珊瑚礁结构及短杆堆积结构.这种表面结构将有助于为骨细胞长入生物陶瓷涂层提供通道.陶瓷层与钛合金基体之间的结合强度大于37.3 MPa.合金层的最高硬度为1600 HV0.2,生物陶瓷涂层显微硬度最大值约为1300HV0.2.  相似文献   

6.
采用激光熔覆技术,通过在商用热喷涂粉末Ni25A合金粉末中复合添加强碳化物形成元素Ti、Zr和W并同时增碳,在45#钢基体上制备了原位析出的颗粒增强镍基复合材料涂层.重点研究了向熔覆粉末中添加不同的稀土氧化物对熔覆层组织的影响.研究表明,稀土元素可以改善原位合成颗粒的形态、尺寸和密度,在镍基涂层中Y2O3的作用显著优于轻稀土氧化物的作用.  相似文献   

7.
TEM观察了BT25y高温钛合金硅化物在固溶处理以及热暴露过程中的析出行为,结合Calphad相图计算技术研究了该合金硅化物的析出机制。在经单相区990℃固溶处理后的个别样品和两相区940℃固溶处理后的部分样品中,观察到(Ti,Zr)5 Si3,硅化物颗粒,依据计算,分析这些硅化物可能是由于Si分布不均匀,局部浓度超过0.3%而析出的;在两相区940℃固溶处理后的样品中还观察到平衡析出的(Ti,Zr)6 Si3硅化物颗粒。两种固溶处理后的样品,在700℃热暴露过程中都有大量细颗粒(Ti,Zr)6 Si3硅化物弥散析出。  相似文献   

8.
采用激光预置熔覆技术,通过在FeCSiBRe合金粉末中单独添加强碳化物形成元素Zr和复合添加Zr、Ti、WC元素和碳化物,在中碳钢基体上制备出原位析出的颗粒增强铁基复合材料表层。利用光学显微镜、扫描电子显微镜(SEM)、能谱仪(EDAX),对熔覆层显微组织特征以及硬质颗粒的分布规律进行了观察、分析;利用显微硬度计检测了熔覆层的显微硬度。熔覆层显微组织特征是树枝状的先共晶奥氏体分布在共晶基体上的亚共晶组织。熔覆层与基体成良好的冶金结合且未观察到裂纹和孔隙。熔覆层内析出的硬质颗粒分别是以ZrC和Zr、Ti、W为主的复合碳化物,由于凝固前沿对颗粒的特殊扑获作用,主要分布在枝晶内与枝晶间。  相似文献   

9.
利用压力膨胀仪和萃取复型法研究了Nb-V微合金化钢中(Nb、V)ON析出相在四种压下量(0%、10%、30%、50%)和三种温度(1100℃、1000℃、850℃)下的等温析出规律。并获得了四种类型析出动力学曲线。充分说明在实际控轧中析出相生核和长大是异常复杂的。第一种为无变形条件下。(温度高于850℃)。析出量与颗粒尺寸的变化均处于缓慢过程。析出主要决定于基  相似文献   

10.
TiO2对铁基合金激光熔覆层组织和性能的影响   总被引:5,自引:0,他引:5  
在 4 5 #钢基底上进行了铁基合金和铁基合金加TiO2 的激光熔覆对比实验。采用渗透法观察熔覆层表面裂纹 ,利用金相显微镜和扫描电镜观察熔覆层横断面的显微组织 ,使用X射线衍射仪对熔覆层进行物相分析 ,并测试了熔覆层横断面的硬度分布和熔覆层的摩擦磨损性能。结果表明 ,在一定的工艺条件下 ,添加适量的TiO2 ,可以获得成形良好、无裂纹、组织致密均匀、耐磨性好的高质量铁基激光熔覆层。适量的TiO2 可使涂层共晶体数目增多且分布均匀 ,组织细化 ,裂纹消失 ,在降低涂层裂纹敏感性的同时仍保持涂层的硬度和耐磨性不降低。TiO2 对铁基熔覆层性能改善的原因是 :适量TiO2 的加入 ,在涂层中可形成Cr13Fe35Ni13Ti7金属间化合物 ,熔覆层组织由亚共晶组织转变为性能较好的伪共晶组织 ,且由于高熔点的Ti硼化物的析出 ,提高了形核率 ,使组织颗粒细化、均匀。  相似文献   

11.
激光熔覆原位生成B4C颗粒增强镍基复合涂层的研究   总被引:5,自引:9,他引:5  
牛薪  晁明举  周笑薇  王东升  袁斌 《中国激光》2005,32(11):583-1588
采用自动送粉工艺,在A3钢表面制备出原位生成B4C颗粒增强的镍基激光熔覆层.使用扫描电镜(SEM),电子能谱(EDS)和X射线衍射仪(XRD)对熔覆层的组织和物相构成进行了分析,并对熔覆层进行了硬度、摩擦性能测试.结果表明,原位生长B4C颗粒增强的Ni基复合涂层与基材呈现良好的冶金结合.熔覆层的底部组织为先共晶析出的Cr,Fe的碳化物树枝相分布在γ(Ni Fe)基体中,而中上部组织为先共晶析出的树枝晶和包含原位生成B4C的白色颗粒相分布在共晶基体中.熔覆层具有极高的硬度(平均HV0.31400),耐磨性是纯Ni60涂层的2倍.硬度和耐磨性的提高归因于涂层中大量的包含原位生长B4C颗粒相的生成,并均匀分布于涂层的共晶基体中.  相似文献   

12.
Inconel 625激光合金化层组织、性能与耐磨性研究   总被引:4,自引:0,他引:4  
采用预制涂层激光合金化法 ,在镍基高温合金Inconel 6 2 5表面预置WC -TiC粉末涂料 ,在增碳、锆条件下可获得成形好、无裂纹、与基材形成冶金结合的合金化层。合金化层组织特点是在γ -Ni枝晶内和枝晶间均匀分布大量从液态析出的复合碳化物。电子探针微区分析表明 ,在γ -Ni枝晶内析出富Ti、Nb、Zr、W、Mo的颗粒状复合碳化物 ,颗粒尺寸 1~ 2 μm ,颗粒数达 10 4个 /mm2 量级 ;在γ -Ni枝晶间析出富W、Mo、Cr的形态复杂的条、块状复合碳化物。合金化层显微硬度约为HV0 .2 4 0 0 ,比Inconel 6 2 5合金硬度HV0 .2 2 5 0提高了 6 0 %。环块磨损试验发现 ,上试样为GCr15标准环时 ,激光合金化层耐磨性是Inconel6 2 5合金的 4 .1倍 ,摩擦系数降低 16 % ,耐磨性与钢表层氮化处理试样相当。上试样为渗碳淬火钢环时 ,激光合金化层耐磨性是钢氮化处理试块的 5 .7倍。研究表明 ,镍基高温合金Inconel 6 2 5表面激光合金化制备原位自生复合碳化物颗粒为增强相的激光合金化层具有很好的工艺重现性。  相似文献   

13.
利用激光熔覆技术在45钢表面制备了CoCrFeMnNiTix(x为Ti的摩尔比,x=0.25,0.50,0.75,1.00)高熵合金涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、维氏硬度计、电化学工作站和摩擦磨损试验机等分析了Ti元素对CoCrFeMnNiTix高熵合金涂层微观组织和性能的影响。结果表明CoCrFeMnNiTix高熵合金涂层微观组织是由面心立方(FCC)固溶体相和TiC颗粒相组成的枝晶组织。随着Ti元素增加,TiC颗粒在晶内析出并逐渐增多,在Ti原子固溶引起的晶格畸变和TiC析出的共同影响下,晶格常数先增大后减小。Ti元素的添加引起了涂层的固溶强化和第二相强化,高熵合金涂层的显微硬度逐渐增高至364.5 HV0.3。掺杂Ti元素使高熵合金涂层的腐蚀机制由点蚀转变为晶间腐蚀,随着Ti元素含量增加,涂层活化阶段的晶间腐蚀加剧。涂层的磨损机制随Ti元素的增加由黏着磨损向氧化磨损与磨粒磨损转化,CoCrFeMnNiTi0.25涂层具有最好的耐蚀性能和耐磨性...  相似文献   

14.
葡萄硕果     
金秋时节,一颗颗饱满,挂着露水的葡萄坠满枝头,沉甸甸的葡萄预示着又一个硕果累累的丰收季节。这幅照片是采用水热法一步合成的碳基微球,经过在惰性气氛下二次退火,碳球表面析出尺寸可控的铜纳米颗粒,铜的纳米颗粒均匀地分布在碳球表面。  相似文献   

15.
激光熔覆 Ni Cr Al-陶瓷涂层的磨损性能和显微组织研究陈庆华 龙晋明 魏 仑(昆明理工大学材料与冶金工程学院材料系 ,昆明 65 0 0 93)运用激光熔覆技术和原位反应合成的原理 ,在 4 0 Cr钢表面用预置涂层的方法 ,制备了 (Ti O2 + B2 O3+Al2 O3+ Ti B2 ) / Ni Cr Al金属陶瓷涂层。借助光学显微镜、X射线衍射仪、电子探针及显微硬度计等手段对熔覆层的组织、物相、元素分布和显微硬度分布特征进行了分析研究。实验表明 ,熔覆过程中同时原位生成 Ti B2 和 Al2 O3亚微米颗粒 ,原位生成的两个陶瓷相都以弥散的方式存在于 Ni Cr Al晶…  相似文献   

16.
生物医用钛合金的激光表面改性   总被引:1,自引:0,他引:1  
生物医用钛及其合金是外科植入首选的替代材料,激光表面改性是改善钛合金表面磨损和腐蚀性能的有效方法。采用高功率连续波Nd:YAG激光在Ti6Al4V合金表面进行激光气体氮化改性,获得了均匀致密、无孔洞裂纹等缺陷的氮化物改性层,合金表面对人体有害元素Al、V含量明显降低。利用扫描电子显微镜(SEM)、显微硬度计、振动摩擦磨损实验机及恒电位仪对Ti6Al4V合金气体氮化改性层的组织、磨损及在模拟人体体液中的电化学腐蚀性能进行研究。实验结果表明,激光气体氮化改善了Ti6Al4V合金作为生物医学材料使用的表面性能,其抗磨损及腐蚀性能显著提高。  相似文献   

17.
本文对用作口腔修复材料的钛合金(Ti6Al4V)进行等离子氮化处理.分析和表征改性层显微组织的显微硬度、元素分布情况及改性层相结构;比较了改性前后表面粗糙度、表面形貌及细菌粘附情况.结果显示:钛舍金表面经等离子氯化得到的改性层均匀、致密,厚度约为2.8μm,表面显微硬度值为HK0.0251 443,改性层由TiN及Ti2N两种氮化物组成.与改性前相比,试样表面形貌发生变化,表面粗糙度提高,改性后的钛合金表面可以显著地减少细菌粘附.  相似文献   

18.
采用CO2激光器在Q235钢基体表面激光原位合成TiC/Ni复合涂层;借助于扫描电镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)、显微硬度计、ML-100型磨粒磨损试验机对涂层组织结构、物相、组成成分、硬度及耐磨性能进行了分析。结果表明: 在Q235表面激光熔覆(Ni+Ti+C)混合粉末原位制备出了TiC /Ni复合陶瓷涂层, 涂层组织细密、无裂纹、气孔且与基体呈良好的冶金结合, TiC颗粒呈现块状和花瓣状组织;从表层到底部TiC颗粒数量逐渐减少;添加Ti和C的复合涂层较镍基激光熔覆层, 其显微硬度和耐磨性能都得到了一定的提高。  相似文献   

19.
不同的强碳化物形成元素对激光制备原位合成颗粒增强复合涂层具有不同的作用。向激光合金化或激光熔覆形成的高碳当量熔池中添加能与碳形成间隙相的某些强碳化物形成元素,有利于获得与基材冶金结合的、具有原位合成特征的复合碳化物颗粒增强的高耐磨复合涂层,并且它们对于增强颗粒的形核与生长发挥着各自不同的作用,其中Ti是最重要的形核元素。最终确定了强碳化物形成元素(Ti+Zr+Mo+WC)复合添加的优化方案。采用优化方案在钢和铸铁表面制备出激光原位合成颗粒增强复合涂层。这种涂层在工业生产中表现出优异的摩擦学特性,而这种技术思路在镍基表面也得到了实现。  相似文献   

20.
在45钢表面激光熔覆30%TICp/Ni基合金复合耐磨涂层,其组织由TiC颗粒、γ-Ni固溶体枝状初晶及其晶间的M23C6+γ-Ni共晶组成。TiC颗粒既分布在γ晶内,也可被固液界面推移至晶间与共晶共存。TiCp的形貌特征与其在激光熔覆过程中的溶解析出行为密切相关,其生长机制包括原位析出、桥接生长、独立形核生长和沉淀析出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号