首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Electronics》2007,8(6):773-783
Synthesis of cationic water-soluble polyfluorene derivatives with various side groups, which are used as electron injecting layers in polymer light emitting diodes, is described. Neutral polyfluorene derivatives containing bromo-alkyl terminal groups were synthesized by a palladium catalyzed Suzuki coupling reaction. The bromo-alkyl terminal groups in the neutral polyfluorenes were quaternized by treatment with a trimethyl amine solution. When a high work-function metal such as Ag is used as a cathode in a light emitting diode with an ITO/PEDOT:PSS/MEH-PPV/water-soluble polyfluorene/Ag configuration, effects of these water-soluble polyfluorenes on the device performance were investigated. In the case of poly[(9,9-bis((6′-(N,N,N-trimethylammonium) hexyl)-2,7-fluorene))-alt-(9,9-bis(2-(2-methoxyethoxy)ethyl)-fluorene)] Dibromide (WPF-oxy-F) containing ethylene oxide groups as the electron injecting layer, the electroluminescence efficiency of light emitting devices was significantly enhanced by about two orders of magnitude compared to that of a device without an electron injecting layer because migration of bromide ions via the ethylene oxide side groups led to large space charge. As a result, the injection barrier could be reduced between the emitting layer and Ag cathode resulting high electroluminescence efficiency.  相似文献   

2.
Two fluorene-based conjugated polymer electrolyte (CPE) poly[(9,9-bis(6′-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFNBr) and poly[9,9-bis(4′-sulfonatobutyl)fluorene-alt-2,7-(9,9-dioctylfluorene)] sodium salt (PFSO3Na), bearing amine groups and anionic sulfonate groups on side chains respectively, are synthesized and applied as cathode interlayer in polymer solar cells. Both of the hydrophilic CPEs can well modify the interfacial properties and allow ohomic contact between the activelayer and cathode. The opposite charges exert great influence on the effective work function of cathode and interfacial interaction through the orientation of the interfacial dipole at the active layer/metal electrode interface, subsequently influence the resulting device performance. Compared with the cationic PFNBr, PFSO3Na with anionic sulfonate groups can dramatically reduce the work function of Al by accumulation of the polar groups at the PFSO3Na/Al interface to induce more favorable the interfacial dipole. The better energy alignment for electron extraction and transportation at active layer/Al interface is confirmed by a significant enhancement of VOC. The better wettability and morphology of PFSO3Na on the active layer and the more effective motion of sodium counterion further modify the barrier to facilitate electron extraction and transportation. Moreover, 14% and 22% performance enhancement can also be achieved respectively, when PFNBr and PFSO3Na are used as interlayers for low bandgap poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT)-based solar cells.  相似文献   

3.
Efficient and fully solution-processed blue organic light-emitting diodes (OLEDs) based on fluorescent small-molecule and methanol/water soluble conjugated polymer as electron-injection material are reported. The emitting layer is 3,6-bis(9,9,9′,9′-tetrakis (6-(9H-carbazol-9-yl)hexyl)-9H,9′H-[2,2′-bifluoren]-7-yl)dib-nzo[b, d]thiophene 5, 5-dioxide (OCSoC) with a blue-fluorescent small-molecule, and a methanol/water soluble polymer poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)] (PFN) acted as electron-injection layer (EIL). All the organic layers are spin-coated from solution. The multilayer device structure with emitting layer/electron-injection layer is achieved by solution-processed method without the dissolution problem between layers. The performances of the devices show that the maximum luminous efficiency of the multilayer device is increased about 43%, compared to the single-layer device. PFN acting as the EIL material plays a key role in the improvement of the device performance when used in solution-processed small-molecule OLEDs.  相似文献   

4.
利用Stille偶联聚合反应,将二溴苯并噻二唑、2,5-二噻吩双三丁基锡、9,9-二辛基2,7-二溴芴进行聚合,得到了一种在可见光区具有宽发射范围的三元共聚物,该聚合物的发射光谱涵盖了整个可见光区,发光峰位于470.7,498.9,654.2nm,具有成为单层聚合物白光材料的潜力。  相似文献   

5.
Highly efficient and stable blue quantum-dot light-emitting diodes (QD-LEDs) have been realized by using poly (9,9-bis(N-(2′-ethylhexyl)-carbazole-3-yl)-2,7-fluorene) (PFCz) as hole-transporting layers (HTLs). Due to the carbazole units as substituents at the 9-position of polyfluorene, PFCz shows higher hole mobility and better electrochemical stability than poly (N-vinlycarbazole) (PVK). As a result, the maximum current efficiency (CE) and external quantum efficiency (EQE) of the blue QD-LEDs increased from 4.32 cd A−1 to 7.9% for PVK HTL to 7.38 cd A−1 and 12.61% for PFCz HTL, respectively. Furthermore, the PFCz-based blue QD-LED exhibited lower turn-on voltage and longer device lifetime than the PVK-based device. The improvement performance of blue QD-LED should be attributed to the conjugated fluorene backbone and the substituents of the carbazole active sites, thus enhancing hole mobility and electrochemical stability. This result demonstrates that polyfluorenes with pendent carbazole groups is a promising hole-transporting materials for improving performance of blue QD-LEDs.  相似文献   

6.
We demonstrate highly efficient white emission polymer light-emitting diodes (WPLEDs) from multilayer structure formed by solution processed technique, in which alcohol/water-soluble polymer, poly [(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was incorporated as electron-injection layer and Al as cathode. It was found that the device performance was very sensitive to the solvents from solution of which the PFN electron-injection layer was cast. Devices with electron-injection layer cast from methanol solution show degraded performance while the best device performance was obtained when mixed solvent of water and methanol with ratio of 1:3 was used. We attribute the variation in device performance to washing out the electron transport material in the emissive layer due to rinse effect. As a result of alleviative loss of electron transport material in the emissive layer, the optimized device with a peak luminous efficiency of 18.5 cd A?1 for forward-viewing was achieved, which is comparable to that of the device with same emissive layer but with low work-function metal Ba cathode (16.6 cd A?1). White emission color with Commission International de I’Eclairage coordinates of (0.321, 0.345) at current 10 mA cm?2 was observed.  相似文献   

7.
《Organic Electronics》2014,15(4):850-857
A family of aminoalkyl functionalized blue-, green- and red-emitting polyfluorene based copolymers were synthesized by Suzuki copolymerization. Dibenzothiophene-S,S-dioxide-3,7-diyl (FSO), 2,1,3-benzothiadiazole (BT) and 4,7-di-2-thienyl-2,1,3-benzothiadiazole (DTBT) were incorporated into the backbone of copolymers as blue, green and red chromophores, respectively. It was realized that for all these aminoalkyl functionalized copolymers, the thermal stabilities, UV–vis absorption and electrochemical properties are not affected by molar ratio of aminoalkyl side groups. However, the increased amino-groups content can induce the formation of excimer in FSO based blue-emitting copolymer, which in turn leaded to broadened photoluminescence and electroluminescence spectra along with decreased emission efficiency. In contrast, device based on green and red-emitting copolymers exhibited stable emission, and device performance improved progressively with the enhanced content of aminoalkyl co-monomers. Comparing to the copolymers without aminoalkyl side chains, aminoalkyl functioned materials exhibited distinctly improved device performances for the application as emissive layer in light emitting diodes using high work-function Al as cathode due to the formation of interfacial dipoles that can facilitate electron injection. The maximum luminous efficiency of 3.28, 7.31 and 0.79 cd A−1 was achieved based on copolymers BFN1, GFN15 and RFN15, respectively with device architecture of ITO/PEDOT:PSS/PVK/copolymer/Al. These results indicate that aminoalkyl functionalized copolymers can have great potential for the application as efficient light-emitting layer with high work-function/air-stable cathode.  相似文献   

8.
In this work, low-temperature-processed, titanium-oxide-free perovskite solar cells (PSCs) with power conversion efficiency (12.2%) comparable to that of titanium-oxide-based PSCs were fabricated. The fabricated PSCs exhibited a small hysteresis owing to the two-step preparation method employed for perovskite films. A poly [(9,9-bis(3’-(N,N-dimethylamino) propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN)-tuned indium-tin-oxide (ITO) electrode was employed as a cathode and phenyl-C61-butyric acid methyl ester (PCBM) was used as an electron transport layer. Owing to the formation of surface dipoles, the work function of the ITO electrode could be tuned from −4.75 eV to −4.12 eV, which is more efficient for electron collection. Our proposed method significantly lowers the PSC processing temperature from 500 °C to 100 °C, which is advantageous for commercialization of PSCs and fabrication of flexible PSCs.  相似文献   

9.
Here we report the synthesis of two novel phenylene-based polymers-poly(3,6-thienophenanthrene) (PTP36) and poly(2,7-thienophenanthrene) (PTP27) via base-free Suzuki–Miyaura reaction. The structure and electroluminescent properties of the meta-linked PTP36 and para-linked PTP27 are fully characterized. The obtained polymers were found to be liquid-crystalline, with broad band gap of 2.72 eV and 2.49 eV, respectively, which are much smaller than those of corresponding polyphenanthrenes. On the basis of PTP36 and PTP27, copolymers of 2,7-thienophenanthrene and 3,6-thienophenanthrene with 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzothiadiazole (DBT), namely PTP36-DBT and PTP27-DBT were prepared and be investigated as a potential donor material for polymer solar cells. The preliminary data show that the maximal power conversion efficiencies (PCEs) of the PTP27-DBT- and PTP36-DBT-based polymer solar cells are 3.5% and 0.9%, respectively.  相似文献   

10.
《Organic Electronics》2014,15(3):758-774
A series of alcohol-soluble amino-functionalized polyfluorene derivatives (PF-N-S, PF-N-SC8 and PF-N-SOC8) comprising various ratios of dibenzothiophene-S,S-dioxide segments (S/SC8/SOC8) in the main chains, respectively, were synthesized and utilized as cathode interfacial layer (CIL) in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs) with high-work-function Al (or Au) electrode. The polymers possess LUMO/HOMO levels at −2.78 to −3.53 eV/−5.69 to −6.32 eV. Multilayer PLEDs and PSCs with device configurations of ITO/PEDOT:PSS (40 nm)/P-PPV or PFO-DBT35:PCBM = 1:2 (80 nm)/CIL (3–15 nm)/Al (or Au) (100 nm) were fabricated. The PF-N-S-10/Al (or Au) cathode PLEDs displayed maximum luminous efficiency of 24.4 cd A−1 (or 11.9 cd A−1), significantly higher than bare Al (or Au) cathode device, exceeding well-known Ba/Al and poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN)/Al (or PFN/Au) cathode devices. The enhanced open-circuit voltages (Vocs), electron reflux and reduced work functions clarify that the electron injection barrier from the Al (or Au) electrode can be lowered by inserting the polymers as CIL. The resulted PSCs also show device performances exceeding Al and PFN/Al cathode devices. The results indicate that PF-N-S, PF-N-SC8 and PF-N-SOC8 are excellent CIL materials for PLEDs and PSCs with high-work-function Al or Au electrode.  相似文献   

11.
A series of star‐shaped small molecular cathode interlayer materials are synthesized for PTB7:PC71BM based polymer solar cells (PSCs), comprising neutral amino groups, quaternary ammonium ions, amino N‐oxides, and sulfobetaine ions as pendant polar functionalities, respectively. For the first time, the effect of these different pendant functional groups with or without mobile counterions on the cells' photovoltaic properties is investigated in detail. A large improvement in device performance is observed by inserting these cathode interfacial layers (CILs) between the PTB7:PC71BM active layer and the Al electrode. The CILs could effectively lower the work function of the Al cathode, increase the built‐in potential, and decrease the series resistance of the related PSCs. poly(9,9‐dioctylfluorene‐co‐N‐[4‐(3‐methyl‐propyl)]‐diphenylamine) with pendant quaternary ammonium ions shows the best cathode modification ability, giving rise to the highest power conversion efficiency of 10.1%, even better than that of the typical poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] based device. The design strategy and structure–property relationships concluded in this work will be helpful to develop more efficient cathode interface materials for high‐performance PSCs in the future.  相似文献   

12.
Controlled solvent vapor annealing (C-SVA) is a powerful tool to control the morphology for high performance polymer solar cells (PSCs). In this work, the PSCs employed a blend of poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) is used to show this case. The solar cells upon C-SVA give Power Conversion Efficiency (PCE) of 5.40%, in contrast to 4.14% for the pristine and 4.70% for the thermally annealed devices. The increased PSBTBT concentration on the bottom surface of the C-SVA treated film favors charge carriers transportation to the anode, which contributes to the increased hole mobility of the photoactive layer and thus the device performance.  相似文献   

13.
《Organic Electronics》2007,8(6):791-795
We report on light emitting device related properties of the water soluble blue light emitting anionic poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) with alkyl sulfonic acid sodium side chains. Compared to organic solvents water has the advantage of being environmentally friendly, which simplifies the handling during device fabrication by novel preparation techniques such as ink-jet printing. Light emitting devices fabricated from this polymer in thin film configuration show stable blue emission with an emission maximum at approximately 420 nm. Investigations concerning the current–density/voltage and the luminance/voltage device characteristics as well as the current–density over operation time at constant biases allow the identification of intrinsic electrochemical doping effects caused by ionic groups attached on the side chains of the polymer. Due to this fact, firstly the electroluminescence onset voltage for devices using high work-function electrodes for electron injection such as aluminum, which has the advantage of being air stable, can be distinctly reduced, and secondly devices fabricated from this polymer showed luminance in forward bias direction as well as in reverse bias direction.  相似文献   

14.
《Organic Electronics》2014,15(2):391-398
We present two novel techniques for improving the efficiency of PbS quantum dot (QD) solar cells. First, plasma was applied to QD film with the aim of removing surface organic ligands, and then the chemical and optical properties of the QDs were investigated. Second, a thin layer of conjugated polymer was then deposited on top of the plasma-treated PbS QD film as a transportation layer for holes. The charge separation and subsequent transfer dynamics were examined, as were the resultant photovoltaic characteristics, according to the kind of polymer used. The developed device, which comprises a bilayer heterojunction of plasma-treated PbS QDs and poly[2,6-(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-alt-4,7(2,1,3-benzothiadiazole)] (PSBTBT), showed not only broad-range absorption of the solar spectrum, but also high charge transfer efficiency prior to recombination. This results in a largely increased power conversion efficiency (PCE) of 1.76%, compared to the 0.7% value of a PbS QD-only device not subjected to plasma treatment. This indicates that the proposed techniques are very useful for improving the efficiency of inorganic QD-based solar cells.  相似文献   

15.
We have explored the effect of a range of different cathode materials on the power conversion efficiency of organic (polymer) solar cells based on a blend of the conjugated polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) with the fullerene acceptor PC70BM. We use a transfer matrix reflectivity model to quantify the optical properties of the cathode and the device structure on its operational efficiency and compare this with the results of experimental measurements. We show that both optical and electrical effects play a role in determining overall device efficiency through their impact on short-circuit current, open circuit voltage and fill-factor. We use our model to demonstrate that devices composed of a thin (60–70 nm) active semiconductor layer and a composite cathode composed of a 5 nm thick layer of calcium capped by aluminium combine low optical loss and improved charge extraction and optimised power conversion efficiency.  相似文献   

16.
The efficient sensitization of the photoelectric effect in mixed compositions of poly(phenylquinoline)s (PPQ) with 2,1,3-benzothiadiazole (BTDZ) molecules is established. The introduction of 10 wt % BTDZ results in extension of the spectral sensitivity range of PPQ and an increase in the photosensitivity and photocurrent by factors of 4.5 and more than 6, respectively. It is shown that the effect is caused by complex formation between PPQ donor fragments and BTDZ acceptor molecules; the strongest, in comparison with the increase in photosensitivity, is probably caused by the transport of free photogenerated carriers (electrons) over sensitizer molecules introduced into the polymer.  相似文献   

17.
Dibenzothiophene-S,S-dioxide isomer (FSO) monomers were copolymerized with extensively employed 9,9-dioctyl-2,7-fluorene monomer by Suzuki polycondensation. By introducing FSO unit into polyfluorene backbone, the spectral stability and efficiency of the blue-emitting polyfluorenes are significantly improved. All of the obtained copolymers and their devices exhibit stable photoluminescence (PL) and electroluminescence (EL) spectra, respectively, upon change of thermal annealing temperature and current densities. Furthermore green emission which is usually associated with excimer/aggregation or defects is absent in PL and EL spectra. In fact, the FSO unit acts as a deep trap for electron in the polyfluorene backbone, which could suppress the long wavelength emission. Moreover, the FSO unit lowers LUMO energy levels of the polyfluorenes, thus can maintain a balanced charge carrier injection and transport in the device based on the polymers, and therefore improves the device efficiencies. The device based on PF-2,8FSO1 and PF-3,7FSO5 show an external quantum efficiency (EQE) of 3.6% and a luminance efficiency (LE) of 3.7 cd/A with CIE coordinate of (0.16, 0.07), and an EQE of 3.8% and a LE of 4.6 cd/A with CIE coordinate of (0.15, 0.12), respectively. The results indicate that poly (dibenzothiophene-S,S-dioxide-co-9,9-dioctyl-2,7-fluorene)s could be a promising candidate for blue-emitting polymers with spectral stability and high efficiency.  相似文献   

18.
Electron-injection mechanisms from the air-stable metal-oxide cathode to light-emitting polymer layer are studied. The device configuration is aluminum (Al) doped zinc oxide (AZO)/poly(ethyleneimine) (PEI)/poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT)/molybdenum trioxide/Al, known as an inverted organic light-emitting diode (iOLED). PEI reduces the electron injection barrier between AZO and F8BT by 0.4 eV, and blocks holes at AZO(PEI)/F8BT interface in iOLEDs. The accumulation of holes at the interface greatly enhances the electron injection because of the Fowler-Nordheim type tunneling injection, leading to high current efficiency of iOLEDs.  相似文献   

19.
Redissolusion of an organic film by the subsequent processing solvent is a critical issue for the fabrication of organic multilayer structures and this can limit the advanced development of organic devices for flexible/stretchable application. In this study, we present a simple, doable, and straightforward approach to overcome this problem through introducing a solvent barrier. As a demonstration, we have successfully deposited an organic photoactive material on top of an organic electron transport layer (ETL) by pre-depositing a solvent barrier layer on the ETL for fabricating inverted polymer solar cells (PSCs). Water-/alcohol-soluble and thermally cross-linkable poly[9,9-bis(6’-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis-(3-ethyl(oxetane-3-ethyloxy)-hexyl)-fluorene] (PFN-OX) is selected as the solvent barrier material. PSCs fabricated with organic-ETL/PFN-OX bilayer show improved performance in comparison with those using conventional ZnO as ETL due to the enhanced interface compatibility as well as improved charge extraction, hole blocking, and interfacial recombination properties. In addition, those devices also exhibit longer lifetime and better light-soaking stability. Therefore, the approach of introducing solvent barrier is facile to stack organic films of similar solvent preference together and the resulting structure carries enhanced interfacial electrical properties, which can have positive effects on the device performance. We believe that our proposed idea is very useful and can advance the development of flexible/stretchable devices to be applied in wearable technology.  相似文献   

20.
A series of amino N‐oxide functionalized polyfluorene homopolymers and copolymers (PNOs) are synthesized by oxidizing their amino functionalized precursor polymers (PNs) with hydrogen peroxide. Excellent solubility in polar solvents and good electron injection from high work‐function metals make PNOs good candidates for interfacial modification of solution processed multilayer polymer light‐emitting diodes (PLEDs) and polymer solar cells (PSCs). Both PNOs and PNs are used as cathode interlayers in PLEDs and PSCs. It is found that the resulting devices show much better performance than devices based on a bare Al cathode. The effect of side chain and main chain variations on the device performance is investigated. PNOs/Al cathode devices exhibit better performance than PNs/Al cathode devices. Moreover, devices incorporating polymers with para‐linkage of pyridinyl moieties exhibit better performance than those using polymers with meta‐linked counterparts. With a poly[(2,7‐(9,9‐bis(6‐(N,N‐diethylamino)‐hexyl N‐oxide)fluorene))‐alt‐(2,5‐pyridinyl)] (PF6NO25Py) cathode interlayer, the resulting device exhibits a luminance efficiency of 16.9 cd A?1 and a power conversion efficiency of 6.9% for PLEDs and PSCs, respectively. These results indicate that PNOs are promising new cathode interlayers for modifying a range of optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号