首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据带隙基准电压源理论,在传统CMOS带隙电压源电路结构的基础上,采用曲率补偿技术,对一阶温度补偿电路进行高阶补偿,获得了一种结构简单,电源抑制比和温度系数等性能都较好的带隙电压基准源.该电路采用CSMC 0.5 μm标准CMOS工艺实现,用Spectre进行仿真.结果表明,在3.3 V电源电压下,在-30 ℃~125 ℃范围内,温度系数为3.2×10-6 /℃;在27 ℃下,10 Hz时电源抑制比(PSRR)高达118 dB,1 kHz时(PSRR)达到86 dB.  相似文献   

2.
尹勇生  易昕  邓红辉 《微电子学》2017,47(6):774-778
根据带隙基准电压源工作原理,设计了一种带2阶温度补偿的负反馈箝位CMOS基准电压源。不同于带放大电路的带隙基准电压源,该基准电压源不会受到失调的影响,采用的负反馈箝位技术使电路输出更稳定。加入了高阶补偿电路,改善了带隙基准电压源的温漂特性。电路输出阻抗的增大有效提高了电源抑制比。基于0.18 μm CMOS 工艺,采用Cadence Spectre软件对该电路进行了仿真,电源电压为2 V,在-40 ℃~110 ℃温度范围内温度系数为4.199 ×10-6/℃,输出基准电压为1.308 V,低频下电源抑制比为78.66 dB,功耗为120 μW,总输出噪声为0.12 mV/Hz。  相似文献   

3.
针对当前射频系统中电源管理芯片在宽温度范围下对带隙基准稳定性的较高要求,提出了一种新型互补带隙基准电路结构,通过将带隙基准与MOS弱反型区基准的温度系数曲率互补叠加,实现了极宽温度范围内带隙电压基准的高温度稳定性输出.采用0.35 μm CMOS工艺对所设计的电路进行了流片验证,测试结果表明,基准电压源工作电压为5V时,输出基准电压1.28 V,在-55 ~125℃温度范围内,温度系数可达4.5×10-6/℃,频率1 kHz时,电源抑制比(PSRR)可达-60 dB,100 kHz时,PSRR可达-55 dB,电压基准源芯片面积为0.22 mm×0.15 mm.  相似文献   

4.
在对传统典型CMOS带隙电压基准源电路分析基础上提出了一种高精度、高电源抑制带隙电压基准源。采用二阶曲率补偿技术,电路采用预电压调整电路,为基准电路提供稳定的电源,提高了电源抑制比,在提高精度的同时兼顾了电源抑制比,整个电路采用了CSMC0.5μm标准CMOS工艺实现,采用spectre进行进行仿真,仿真结果显示当温度为-40℃~80℃,输出基准电压变化小于1mV,温度系数为3.29×10-6℃,低频时(1kHz)的电源抑制比达到75dB,基准电路在高于3.3V电源电压下可以稳定工作,具有较好的性能。  相似文献   

5.
崔嘉杰  罗萍 《微电子学》2014,(4):416-419
基于CSMC 0.5μm标准CMOS工艺,设计了一种高精度电流型CMOS带隙基准电压源。仿真结果表明,温度在-40℃~125℃范围内,基准输出电压的温度系数为1.3×10-5/℃;电源电压在3.3~5 V之间变化时,基准输出电压变化为0.076 mV,电源抑制比PSRR为-89 dB。同时,该电路包含修调电路,可在不同工艺角下进行校正,具有温度系数低、电源抑制比高、精度高等特点。  相似文献   

6.
路宁  刘章发  尉理哲 《半导体技术》2007,32(12):1082-1085
分析了传统CMOS带隙基准源电路中三极管VBE电流随温度变化的二阶非线性效应,提出了一种对PTAT二阶温度进行补偿的方法,并在此基础上设计了一个高精度的带隙基准源电路.该电路采用SMIC 0.18 μm CMOS工艺实现,具有良好的温度系数和电源抑制比.Cadence Spectre仿真结果表明,该电路在-40~140 ℃的温度系数为7.7×10-6/℃,低频时的电源抑制比可达-76 dB,基准源电路的供电电压范围为2~4.5 V.  相似文献   

7.
一种高精度CMOS带隙基准电压源设计   总被引:2,自引:1,他引:1  
介绍了带隙基准电压源的基本原理,设计了一种高精度带隙基准电压源电路.该电路采用中芯国际半导体制造公司0.18 μm CMOS工艺.Hspice仿真表明,基准输出电压在温度为-10~120 ℃时,温度系数为6.3×10-6/℃,在电源电压为3.0~3.6 V内,电源抑制比为69 dB.该电压基准在相变存储器芯片电路中,用于运放偏置和读出/写驱动电路中所需的高精度电流源电路.  相似文献   

8.
根据带隙基准的基本原理,结合含三条支路负反馈的电流源,设计了一种高阶补偿的带隙基准源电路。实现了对温度的2阶补偿和3阶补偿,获得了一种高电源抑制比、低温漂、不受电源变化影响的电压基准源。设计采用0.35μm CMOS工艺,仿真结果表明,在-40℃~125℃温度范围内,输出电压的温度系数为7.70×10-7/℃,在1kHz时,电源抑制比为-82.3dB。  相似文献   

9.
孙大开  李斌桥  徐江涛  李晓晨 《微电子学》2012,42(4):531-533,550
描述了一个具有高电源抑制比和低温度系数的带隙基准电压源电路。基于1阶零温度系数点可调节的结构,通过对不同零温度系数点带隙电压的转换实现低温度系数,并采用了电源波动抑制电路。采用SMIC 0.18μm CMOS工艺,经过Cadence Spectre仿真验证,在-20℃~100℃温度范围内,电压变化范围小于0.5mV,温度系数不超过7×10-6/℃。低频下的电源抑制比为-107dB,在10kHz下,电源抑制比可达到-90dB。整个电路在供电电压大于2.3V时可以实现正常启动,在3.3V电源供电下,电路的功耗约为1.05mW。  相似文献   

10.
一种用于D/A转换电路的带隙基准电压源的设计   总被引:1,自引:0,他引:1  
本文介绍了带隙基准电压源的原理,实现了一个高精度的带隙基准电压源电路。此电路在-20℃ ̄100℃的温度范围内,有效温度系数为6.1ppm/℃;电源电压在1.6V ̄2.0V变化时,其电源抑制比为103.7dB。  相似文献   

11.
基于CSMC 0.5μm CMOS工艺,设计了一种具有低温度系数、带2阶补偿的带隙基准电压源.在传统放大器反馈结构带隙基准源的基础上,利用MOS器件的“饱和电流与过驱动电压成平方关系”产生2阶补偿量,对传统的带隙基准进行高阶补偿.具有电路实现简单,容易添加到传统带隙基准电路的优点.仿真结果表明,设计的基准电压源在5V电源电压下功耗为860 μW,最低工作电压为1.24 V,在-50℃~125℃的温度范围内获得了1.42×10-5/℃的温度系数,低频时的电源抑制比达到-86.3 dB.  相似文献   

12.
设计了一种高电源抑制比(PSRR)、低温漂的无电阻带隙基准源。在传统无电阻带隙基准电压源的基础上引入反馈环路,实现了对电压的箝制,减小了沟道长度调制效应和失调电压,提高了带隙基准源的PSRR。引入正温度补偿电路,减小了带隙基准源的温度系数。采用TSMC 0.18 μm CMOS工艺对电路进行了仿真。结果表明,在3 V工作电压下,在低频下带隙基准源的PSRR为-65 dB,在-25 ℃~125 ℃温度范围内的温度系数为3.72×10-5/℃。  相似文献   

13.
提出了一种低电压、低功耗、中等精度的带隙基准源,针对电阻分流结构带隙基准源在低电源电压下应用的不足作出了一定的改进,整体电路结构简单且便于调整,同时尽可能地减少了功耗.该电路采用UMC 0.18 μm Mixed Mode 1.8 V CMOS工艺实现.测试结果表明,电路在1 V电源电压下,在-20~30℃的温度范围内,基准电压的温度系数为20×10-6/℃,低频时的电源电压抑制比为-54 dB,1 V电源电压下电路总功耗仅为3μW.  相似文献   

14.
马建斌  金湘亮  计峰  陈杰   《电子器件》2006,29(3):697-700
阐述了一种输出电压为853 hV的带隙基准电压源电路,该电路采用0.18μm标准CMOS工艺实现,可在1.8 V的电源电压下工作,在-20℃到120℃温度范围内其温度系数为24×10-6/℃.在频率低于10kHz时,电源抑制比保持在-66dB.电路版图的有效面积为0.022 mm2.该电路已成功应用于低功耗CMOS图象传感器芯片当中.  相似文献   

15.
基于0.18μm CMOS工艺,设计了一种低电源电压的带隙基准源.该带隙基准源电路采用非线性温度补偿,具有很高的温度稳定性.Hspice仿真结果显示,电源电压最低为1.2V时,在-40~135℃的温度范围内,输出电压在556.03~556.26mV之间变化,平均温度系数约仅为2.36ppm/℃,电源电压抑制比可达到90dB.  相似文献   

16.
分析了传统CMOS工艺带隙基准源电路中基准电压设计的局限性。给出了一种低电源电压带隙基准源的电路设计方法,该电路采用TSMC0.13μm CMOS工艺实现,通过Cadence Spectre仿真结果表明,该电路产生的600mV电压在-30-100℃范围内的温度系数为12×10^-6/℃,低频时的电源抑制比(PSRR)可达-81dB,可在1-1.8V范围内能正常工作。  相似文献   

17.
设计了一种线性补偿低温漂高电源抑制比带隙基准电压源电路。带隙基准核心电路采用三支路共源共栅电流镜结构,提高电路电源抑制比。补偿电路采用分段补偿原理,在低温阶段,加入一段负温度系数电流,在高温阶段,加入一段正温度系数电流,通过补偿,使带隙基准输出电压的精确度大大提高,达到降低温度系数的目的;同时电流镜采用共源共栅结构,不仅提高电路的电源抑制比,而且可以抑制负载对镜像晶体管电压的影响。基于0.5 μm CMOS工艺,使用Cadence Spectre对电路仿真,结果表明,在-50~+125℃温度范围内,基准输出电压的温度系数为2.62×10-6/℃,低频时的电源抑制比(PSRR)高达88 dB。  相似文献   

18.
利用两个工作在亚阈区的MOS管的栅源电压差△VGS产生高阶补偿量,对传统的BJT带隙基准源进行高阶温度补偿。设计一种基于△VGS高阶温度补偿的高精度CMOS带隙基准源。电路基于CSMC 0.5um标准CMOS工艺设计,仿真结果表明:在5V电源电压下,基准输出电压为1.258V;在-40~125℃的温度范围内,温度系数为1.24ppm/℃;低频时电源抑制比PSRR为-68dB;电源电压在3.5~6.5V范围内工作,线性调整率为0.4mV/V。适用于高精度带隙基准源。  相似文献   

19.
传统带隙基准源电路采用PNP型三极管来产生ΔVbe,此结构使运放输入失调电压直接影响输出电压的精度。文章在对传统CMOS带隙电压基准源电路原理的分析基础上,提出了一种综合了一阶温度补偿和双极型带隙基准电路结构优点的高性能带隙基准电压源。采用NPN型三极管产生ΔVbe,消除了运放失调电压影响。该电路结构简洁,电源抑制比高。整个电路采用SMIC 0.18μmCMOS工艺实现。通过Cadence模拟软件进行仿真,带隙基准的输出电压为1.24V,在-40℃~120℃温度范围内其温度系数为30×10-6/℃,电源抑制比(PSRR)为-88 dB,电压拉偏特性为31.2×10-6/V。  相似文献   

20.
针对传统一阶温度补偿的CMOS带隙基准电压源的温度特性较差的问题,在此基础上采用高阶温度补偿以改善温度特性,并且在电路中增加了带有负反馈的前调整器,提高了基准电压的电源抑制比.对电路采用SMICO.18CMOS工艺进行仿真,输出电压在温度为-20℃~+58℃范围内有负的温度系数2.34×10-6/℃,在温度为58℃~120℃范围内有正的温度系数为2.21×10-6/℃,在低频时电源抑制比可达116 dB,在10 kHz时也可达到73 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号