首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper proposes an instantaneous recovery route design scheme using multiple coding-aware link protection scenarios to achieve higher link cost reduction in the network. In this scheme, two protection scenarios, namely, (i) traffic splitting (TS), and (ii) two sources and a common destination (2SD) are used to integrate multiple sources and a common destination. The proposed scheme consists of two phases. In the first phase, the proposed scheme determines routes for 2SD and TS scenarios of all possible source-destination pairs to minimize the total link cost. In this phase, the network coding is applied to the common path within each scenario, individually. In the second phase, network coding is applied to the common path between two scenarios (or a scenario pair) in order to enhance the resource saving. This phase develops conditions that select the most appropriate combination of scenario pairs, such as TSTS, 2SD–2SD, and 2SDTS for network coding, including their proofs. Using these conditions, a heuristic algorithm is introduced in order to select the most appropriate combination of scenario pairs for further enhancing of resource saving. Simulation results show that the proposed scheme outperforms the conventional 1 + 1 protection scheme, the TS scenario, and the 2SD scenario in terms of link cost reduction in the network.  相似文献   

2.
The linear random AR(2) autoregressive process having the negative binomial distribution has been considered. It has the form ξ t + a 1ξ t-1 + a 2ξ t-2 = ? t , tZ, where {a 1, a 2 ≠ 0} are the autoregressive parameters; Z = {...,-1,0,1,...} is the sequence of integers; {ξ t ,tZ} is the random process with discrete time and independent values having the infinitely divisible distribution law that is called generating process. The method of finding the characteristic function of the generating process for linear autoregressive process having negative binomial distribution is presented. This inverse problem is solved by using properties of the characteristic function of stationary linear autoregressive process that can be presented in the Kolmogorov canonical form and as a linear stationary autoregressive process. An example of finding the Poisson spectrum of jumps and the characteristic function for the linear second order autoregressive process (AR(2)) with negative binomial distribution has been also presented.  相似文献   

3.
We present the results of a study on localized electronic centers formed in crystals by external influences (impurity introduction and irradiation). The main aim is to determine the nature of these centers in the forbidden gap of the energy states of the crystal lattice. For the case of semiconductors, silicon (Si) was applied as model material to determine the energy levels and concentration of radiation defects for application to both doped and other materials. This method relies on solving the appropriate equation describing the variation of the charge carrier concentration as a function of temperature n(T) for silicon crystals with two different energy levels and for a large set of N 1, N 2 (concentrations of electronic centers at each level), and n values. A total of almost 500 such combinations were found. For silicon, energy level values of ε 1 = 0.22 eV and ε 2 = 0.34 eV were used for the forbidden gap (with corresponding slopes determined from experimental temperature-dependent Hall-effect measurements) and compared with photoconductivity spectra. Additionally, it was shown that, for particular correlations among N 1, N 2, and n, curve slopes of ε 1/2 = 0.11 eV, ε 2/2 = 0.17 eV, and α = 1/2(ε 1 + ε 2) = 0.28 eV also apply. Comparison between experimental results for irradiation of silicon crystals by 3.5-MeV energy electrons and Co60 γ-quanta revealed that the n(T) curve slopes do not always coincide with the actual energy levels (electronic centers).  相似文献   

4.
For polycrystalline films of cobalt that have the thickness t ≈ 1.3–133 nm and that are deposited via DC magnetron sputtering on SiO2(0.1 μm)/Si(100) substrates, surface-roughness root-mean-square amplitude σ and surface correlation length ξ, which characterize the roughness of film surfaces, as well as saturation magnetization 4πM 0, width of ferromagnetic-resonance line ΔH, coercitivity H C, and saturation fields H S, are studied as functions of film thickness t. It is shown that the behavior of dependences H C(t) and H S(t) coincides with the behavior of dependence σ(t)/t, whereas the behavior of 4πM 0(t) depends on ratio t/σ(t). The dependence of the FMR line width on the film thickness, ΔH(t), is characterized by a minimum of ΔH ≈ 60 Oe present in the region of thicknesses of 30 to 60 nm. The behavior of dependence ΔH(t) is determined by ratio σ(t)/t at small thicknesses t ≤ 5 nm and by the behavior of σ(t) at t ≥ 5 nm.  相似文献   

5.
A model for the explaining specific features of the electron transport in strong electric fields in the quantum-dot unipolar heterostructure transistor (AlGaAs/GaAs/InAs/GaAs/InAs) is presented. It is shown that the two-step shape of the output current-voltage characteristic I D (V D ) and the anomalous dependence of the drain current I D on the gate voltage V G are caused by the ionization of quantum dots in the strong electric field at the drain gate edge. The ionization of quantum dots sets in at the drain voltage V D that exceeds the VD1 value, at which the I D (V D ) dependence is saturated (the first step of the I-V characteristic). With the subsequent increase in V D , i.e., for V D >VD1, the I D (V D ) dependence has a second abrupt rise due to the ionization of quantum dots, and then, for V D =VD2>VD1, the current I D is saturated for the second time (the second step in the current-voltage characteristic). It is suggested to use this phenomenon for the determining the population of quantum dots with electrons. The model presented also describes the twice-repeated variation in the sign of transconductance g m =dI D /dV G as a function of V G .  相似文献   

6.
This paper deals with the problem of optimal association of stations (S T A s) to access points (A P s) for mulicast services in IEEE 802.11 WLAN. In a multicast session, all the subscribed S T A s receive the multicast data packet at the same data rate (R m i n ) from their respective serving A P s. A higher value of R m i n improves the multicast throughput by completing the ongoing multicast session in lesser time. This also improves the unicast throughput as the cycle duration is shared by the unicast and multicast sessions. To provide multicast services to the S T A s, we need to select a minimum cardinality subset of A P s as the system message overhead depends on this cardinality. However, such a minimum cardinality subset of A P s may not be possible to activate simultaneously due to the limited number of available orthogonal frequency channels. In this paper, we develop a combined greedy algorithm that selects a subset of A P s with minimum cardinality for which a conflict-free frequency assignment exists and finds an association between the S T A s and the selected A P s that maximizes the R m i n value. Through simulation we have shown that the proposed algorithm selects significantly less number of A P s for different R m i n values in comparison to the well-known metrics for multicast association like RSSI, minimum hop-distance, normalized-cost and in-range STA number.  相似文献   

7.
Let g be an element of prime order p in an abelian group, and let α∈? p . We show that if g,g α , and \(g^{\alpha^{d}}\) are given for a positive divisor d of p?1, the secret key α can be computed deterministically in \(O(\sqrt{p/d}+\sqrt{d})\) exponentiations by using \(O(\max\{\sqrt{p/d},\sqrt{d}\})\) storage. If \(g^{\alpha^{i}}\) (i=0,1,2,…,2d) is given for a positive divisor d of p+1, α can be computed in \(O(\sqrt{p/d}+d)\) exponentiations by using \(O(\max\{\sqrt{p/d},\sqrt{d}\})\) storage. We also propose space-efficient but probabilistic algorithms for the same problem, which have the same computational complexities with the deterministic algorithm.As applications of the proposed algorithms, we show that the strong Diffie–Hellman problem and related problems with public \(g^{\alpha},\ldots,g^{\alpha^{d}}\) have computational complexity up to \(O(\sqrt{d}/\log p)\) less than the generic algorithm complexity of the discrete logarithm problem when p?1 (resp. p+1) has a divisor dp 1/2 (resp. dp 1/3). Under the same conditions for d, the algorithm is also applicable to recovering the secret key in \(O(\sqrt{p/d}\cdot \log p)\) for Boldyreva’s blind signature scheme and the textbook ElGamal scheme when d signature or decryption queries are allowed.  相似文献   

8.
When the electrical conductivity, σ, thermal conductivity, λ, and thermopower, S, of a material are all assumed to be constant over the temperature range of interest, then the well-known thermoelectric (TE) figure of merit, Z = σS 2/λ, arises as part of the derivation of conversion efficiency in a TE generator. However, there are an infinite number of parameter sets (σ, λ, S) that yield any given Z. So, are they truly equivalent? This paper reviews the historical basis for Z as a metric for TE quality and discusses results of simulations on three systems having different parameter sets but the same Z. The three systems exhibit different power generation capabilities, illustrating that Z is not sufficient to specify the likely performance of a TE material in a system. Instead, a systems analysis is required that incorporates, at a minimum, source and sink temperatures and thermal resistances.  相似文献   

9.
The electronic properties of armchair graphene oxide nanoribbons (AGONRs) with different doped oxygen configurations are studied based on density functional theory using first principle calculations. The electronic properties of the AGONRs are tuned by different oxygen configurations for top edges, center, bottom edges and fifth width. The AGONRs for top-edge O doping configuration are indirect band gap semiconductors with an energy gap of 1.268 eV involving hybridization among C-2p and O-2s, 2p electrons and electrical conductivity of oxygen atoms. The center and bottom edges are direct band gap semiconductors with 1.317 eV and 1.151 eV, respectively. The valence band is contributed from C-2p, O-2p and H-1s for top-edge O doping. The electronic properties of AGONRs are changed due to localization in ?2.94 eV of O-2p states. The center O-doped AGONRs are n-type semiconductors with Fermi levels near the conduction band bottom. This is due to hybridization among C-2s, 2p and O-2p electrons. However, bottom-edge O-doped AGONRs are p-type semiconductors, due to the electrical conductivity of oxygen atoms. The fifth-width O-doped AGONRs are indirect band gap semiconductors with an energy gap of 0.375 eV. The projected density of states shows that the localization and hybridization between C-2 s, 2p, O-2p and H-1s electronic states are rising in the conduction band and valence band from the projected density of states. The localization is induced by O-2p electronic states at a Fermi level.  相似文献   

10.
The effect of the form of the random potential of impurities and defects on the longitudinal σ xx and Hall σ xy components of conductivity in the mode of the integer quantum Hall effect is theoretically investigated. It is shown that the width of the Hall conductivity plateau as well as the peak values of the longitudinal conductivity heavily depend on the ratio λ/a H between the random potential correlation length and the magnetic length. For the first time, it is established that in the case of the short-wavelength potential λ ? a H, the peak values of σ xx (N) are directly proportional to the Landau level number N ≥ 1, σ xx = 0.5Ne 2/h, whereas the peak values of σ xx (N) are independent of the Landau level number in the case of the long-wavelength potential λ ? a H, and their magnitude is much lower than 0.5e 2/h. The obtained results are in good agreement with the available experimental data.  相似文献   

11.
The length of Source/Drain (S/D) extension (LSDE) of nano-node p-channel FinFETs (pFinFETs) on SOI wafer influencing the device performance is exposed, especially in drive current and gate/S/D leakage. In observation, the longer LSDEpFinFET provides a larger series resistance and degrades the drive current (IDS), but the isolation capability between the S/D contacts and the gate electrode is increased. The shorter LSDE plus the shorter channel length demonstrates a higher trans-conductance (G m ) contributing to a higher drive current. Moreover, the subthreshold swing (S.S.) at longer channel length and longer LSDE represents a higher value indicating the higher amount of the interface states which possibly deteriorate the channel mobility causing the lower drive current.  相似文献   

12.
On the basis of the temperature and field dependences of the Hall coefficient R H , it was found that samples with a low electron density are, as a rule, compensated, and the degree of compensation changes upon thermal conversion of the conductivity of the sample to p type. For n-CdxHg1?xTe, the ionization energy of the donor level was found from the temperature dependences of resistivity ρ(T): E d =24–32 meV. For the same samples, after their thermal conversion to p type, the ionization energies of acceptors, which are related to doubly charged vacancies V Hg ++ , were determined: E a =32 and 48 meV. In addition, a deep level E t , related to an unknown amphoteric impurity, was found (E t ?E v ≈0.7E g ).  相似文献   

13.
The results of studying a HIT (heterojunction with an intrinsic thin layer) Ag/ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n+)/ITO/Ag solar cell by the capacitance–voltage characteristic and current deep-level relaxation transient spectroscopy methods are presented. The temperature dependence of the capacitance–voltage characteristics of the HIT structure and deep-energy-level parameters are studied. The results of comprehensive studies by the above methods are used to determine the features of the energy-band diagram of actual HIT structures.  相似文献   

14.
In this paper, secrecy performance of a cognitive two-way denoise-and-forward relaying network consisting of two primary user (PT and PD) nodes, two secondary source (SA and SB) nodes, multiple secondary relay (\({\textit{SR}}_i\)) nodes and an eavesdropper (E) node is considered, where SA and SB exchange their messages with the help of one of the relays using a two-way relaying scheme. The eavesdropper tries to wiretap the information transmitted between SA and SB. To improve secrecy performance of the network, two relay selection schemes called maximum sum rate and maximum secrecy capacity based relay selection (MSRRS and MSCRS) are proposed and analyzed in terms of intercept probability. It is proved that the MSRRS and MSCRS schemes have the same secrecy performance. Two parameters called average number gain and average cost gain are proposed to show the performance of the proposed relay selection schemes. Numerical results demonstrated that with 10 relay nodes, the proposed relay selection schemes can achieve, respectively, 3.7 dB and 1.9 dB’s improvements in terms of the reduced intercept probability and the enhanced secrecy capacity compared to the traditional round-robin scheme.  相似文献   

15.
The basic requirements on process design of extremely scaled devices involve appropriate work function and tight doping control due to their significant effect on the threshold voltage as well as other critical electrical parameters such as drive current and leakage. This paper presents a simulation study of 22-nm fin field-effect transistor (FinFET) performance based on various process design considerations including metal gate work function (WF), halo doping (N halo), source/drain doping (N sd), and substrate doping (N sub). The simulations suggest that the n-type FinFET (nFinFET) operates effectively with lower metal gate WF while the p-type FinFET (pFinFET) operates effectively with high metal gate WF in 22-nm strained technology. Further investigation shows that the leakage reduces with increasing N halo, decreasing N sd, and increasing N sub. Taguchi and Pareto analysis-of-variance approaches are applied using an L27 orthogonal array combined with signal-to-noise ratio analysis to determine the best doping concentration combination for 22-nm FinFETs in terms of threshold voltage (V t), saturation current (I on), and off-state current (I off). Since there is a tradeoff between I on and I off, the design with the nominal-is-best V t characteristic is proposed, achieving nominal V t of 0.259 V for the nFinFET and ?0.528 V for the pFinFET. Pareto analysis revealed N halo and N sub to be the dominant factor for nFinFET and pFinFET performance, respectively.  相似文献   

16.
In this paper, we present a novel computationally efficient motion estimation (ME) algorithm for high-efficiency video coding (HEVC). The proposed algorithm searches in the hexagonal pattern with a fixed number of search points at each grid. It utilizes the correlation between contiguous pixels within the frame. In order to reduce the computational complexity, the proposed algorithm utilizes pixel truncation, adaptive search range, sub-sampling and avoids some of the asymmetrical prediction unit techniques. Simulation results are obtained by using the reference software HM (e n c o d e r_l o w d e l a y_P_m a i n and e n c o d e r_r a n d o m a c c e s s_m a i n profile) and shows 55.49% improvement on search points with approximately the same PSNR and around 1% increment in bit rate as compared to the Test Zonal Search (TZS) ME algorithm. By utilizing the proposed algorithm, the BD-PSNR loss for the video sequences like B a s k e t b a l l P a s s_416 × 240@50 and J o h n n y_1280 × 720@60 is 0.0804 dB and 0.0392 dB respectively as compared to the HM reference software with the e n c o d e r_l o w d e l a y_P_m a i n profile.  相似文献   

17.
The ZnS-CdxHg1?xTe interface was investigated using the capacitance-voltage characteristics of MIS structures in experimental samples. During fabrication of the n+-p junctions based on p-CdxHg1?xTe, the density of states within the range N ss =(1–6)×1011 cm?2 eV?1 at T=78 K was obtained. The experiments showed that the conditions in which n+-p junctions are fabricated only slightly affect the state of the ZnS-CdHgTe interface. The negative voltages of the at bands V FB , even if immediately after deposition of the ZnS films V FB >0, point to the enrichment of the ZnS-p-CdHgTe near-surface layer with majority carriers, specifically, holes. This led to a decrease in the leakage current over the surface. During long-term storage (as long as ~15 years) in air at room temperature, no degradation of differential resistance R d , current sensitivity S i , and detectivity D* of such n+-p junctions with a ZnS protection film was observed.  相似文献   

18.
All published results of measurements (at 300 K) of the impact ionization coefficients for electrons αn and holes αp in 4H–SiC are analyzed. It is shown that the most plausible approximations of dependences of αn, p on electric-field strength E have the usual form αn, p = an, p exp(–En, p/E) at fitting-parameter values of an = 38.6 × 106 cm–1, En = 25.6 MV/cm, ap = 5.31 × 106 cm–1, and Ep = 13.1 MV/cm. These dependences αn, p(E) are used to calculate the highest field strength Eb and thickness wb of the space-charge region at the breakdown voltage Ub. A number of new formulas for calculating αn, p(E) are obtained from the results of measuring the avalanche-multiplication coefficients and the excess-noise factors under the single-sided illumination of photodiodes with stepped doping.  相似文献   

19.
The resistivity and Hall coefficient in n-CdAs2 and p-ZnAs2 are measured at room temperature under a hydrostatic pressure as high as 9 GPa and quasi-hydrostatic pressure as high as 50 GPa. For n-CdAs2, the phase transition is found at P = 5.5 GPa, and for p-ZnAs2, two phase transitions take place; the first at P = 10–15 GPa, and the second at P = 35–40 GPa.  相似文献   

20.
p-Si samples irradiated with 8-Mev electrons are studied. It is suggested that the multicomponent V3+O or V2+O2 complexes are not recombination centers on the basis of an analysis of the dependences of the minority-carrier lifetime τ, the resistivity ρ, the concentration p, and the Hall mobility μH on the temperature of isochronous annealing Tann. Deep donors with energy levels at ΔEi=Ev+0.40 eV and the V3+O3 and the V3+O2 complexes affect the values of μH and τ. The curves of isochronous annealing are used to determine the annealing-activation energies Eann for defects such as K centers, interstitial carbon atoms Ci, the V+B and V2+O2 complexes, divacancies V2, and defects with a level at ΔEi=Ev+0.20 eV. These energies were found to be equal to Eann=0.9, 0.25, 1.6, 2, 1.54, and 2.33 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号