首页 | 官方网站   微博 | 高级检索  
     


Simulation of Electronic Center Formation by Irradiation in Silicon Crystals
Authors:H N Yeritsyan  A A Sahakyan  N E Grigoryan  V V Harutyunyan  V M Tsakanov  B A Grigoryan  A S Yeremyan  G A Amatuni
Affiliation:1.Department of Applied Physics,Yerevan Physics Institute,Yerevan,Armenia;2.CANDLE Synchrotron Research Institute,Yerevan,Armenia
Abstract:We present the results of a study on localized electronic centers formed in crystals by external influences (impurity introduction and irradiation). The main aim is to determine the nature of these centers in the forbidden gap of the energy states of the crystal lattice. For the case of semiconductors, silicon (Si) was applied as model material to determine the energy levels and concentration of radiation defects for application to both doped and other materials. This method relies on solving the appropriate equation describing the variation of the charge carrier concentration as a function of temperature n(T) for silicon crystals with two different energy levels and for a large set of N 1, N 2 (concentrations of electronic centers at each level), and n values. A total of almost 500 such combinations were found. For silicon, energy level values of ε 1 = 0.22 eV and ε 2 = 0.34 eV were used for the forbidden gap (with corresponding slopes determined from experimental temperature-dependent Hall-effect measurements) and compared with photoconductivity spectra. Additionally, it was shown that, for particular correlations among N 1, N 2, and n, curve slopes of ε 1/2 = 0.11 eV, ε 2/2 = 0.17 eV, and α = 1/2(ε 1 + ε 2) = 0.28 eV also apply. Comparison between experimental results for irradiation of silicon crystals by 3.5-MeV energy electrons and Co60 γ-quanta revealed that the n(T) curve slopes do not always coincide with the actual energy levels (electronic centers).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号