首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Semiconductive transition metal dichalcogenides (TMDs) have been considered as next generation semiconductors, but to date most device investigations are still based on microscale exfoliation with a low yield. Wafer scale growth of TMDs has been reported but effective doping approaches remain challenging due to their atomically thick nature. This work reports the synthesis of wafer‐scale continuous few‐layer PtSe2 films with effective doping in a controllable manner. Chemical component analyses confirm that both n‐doping and p‐doping can be effectively modulated through a controlled selenization process. The electrical properties of PtSe2 films have been systematically studied by fabricating top‐gated field effect transistors (FETs). The device current on/off ratio is optimized in two‐layer PtSe2 FETs, and four‐terminal configuration displays a reasonably high effective field effect mobility (14 and 15 cm2 V?1 s?1 for p‐type and n‐type FETs, respectively) with a nearly symmetric p‐type and n‐type performance. Temperature dependent measurement reveals that the variable range hopping is dominant at low temperatures. To further establish feasible application based on controllable doping of PtSe2, a logic inverter and vertically stacked p–n junction arrays are demonstrated. These results validate that PtSe2 is a promising candidate among the family of TMDs for future functional electronic applications.  相似文献   

2.
Presently, research in layered transition metal dichalcogenides (TMDs) for numerous electrochemical applications have largely focused on Group 6 TMDs, especially MoS2 and WS2, whereas TMDs belonging to other groups are relatively unexplored. This work unravels the electrochemistry of Group 10 TMDs: specifically PtS2, PtSe2, and PtTe2. Here, the inherent electroactivities of these Pt dichalcogenides and the effectiveness of electrochemical activation on their charge transfer and electrocatalytic properties are thoroughly examined. By performing density functional theory (DFT) calculations, the electrochemical and electrocatalytic behaviors of the Pt dichalcogenides are elucidated. The charge transfer and electrocatalytic attributes of the Pt dichalcogenides are strongly associated with their electronic structures. In terms of charge transfer, electrochemical activation has been successful for all Pt dichalcogenides as evident in the faster heterogeneous electron transfer (HET) rates observed in electrochemically reduced Pt dichalcogenides. Interestingly, the hydrogen evolution reaction (HER) performance of the Pt dichalcogenides adheres to a trend of PtTe2 > PtSe2 > PtS2 whereby the HER catalytic property increases down the chalcogen group. Importantly, the DFT study shows this correlation to their electronic property in which PtS2 is semiconducting, PtSe2is semimetallic, and PtTe2 is metallic. Furthermore, Pt dichalcogenides are effectively activated for HER. Distinct electronic structures of Pt dichalcogenides account for their different responses to electrochemical activation. Among all activated Pt dichalcogenides, PtS2 shows most accentuated improvement as a HER electrocatalyst with an exceptional 50% decline in HER overpotential. Knowledge on Pt dichalcogenides provides valuable insights in the field of TMD electrochemistry, in particular, for the currently underrepresented Group 10 TMDs.  相似文献   

3.
2D materials display very promising intrinsic material properties, with multiple applications in electronics, photonics, and sensing. In particular layered platinum diselenide has shown high potential due to its layer-dependent tunable bandgap, low-temperature growth, and high environmental stability. Here, the conformal and area selective (AS) low-temperature growth of layered PtSe2 is presented defining a new paradigm for 2D material integration. The thermally-assisted conversion of platinum which is deposited by AS atomic layer deposition to PtSe2 is demonstrated on various substrates with a distinct 3D topography. Further the viability of the approach is presented by successful on-chip integration of hybrid semiconductor devices, namely by the manufacture of a highly sensitive ammonia sensors channel with 3D topography and fully integrated infrared-photodetectors on silicon photonics waveguides. The presented methodologies of conformal and AS growth therefore lay the foundation for new design routes for the synthesis of more complex hybrid structures with 2D materials.  相似文献   

4.
Group‐10 layered transitional metal dichalcogenides including PtS2, PtSe2, and PtTe2 are excellent potential candidates for optoelectronic devices due to their unique properties such as high carrier mobility, tunable bandgap, stability, and flexibility. Large‐area platinum diselenide (PtSe2) with semiconducting characteristics is far scarcely investigated. Here, the development of a high‐performance photodetector based on vertically aligned PtSe2‐GaAs heterojunction which exhibits a broadband sensitivity from deep ultraviolet to near‐infrared light, with peak sensitivity from 650 to 810 nm, is reported. The Ilight/Idark ratio and responsivity of photodetector are 3 × 104 and 262 mA W?1 measured at 808 nm under zero bias voltage. The response speed of τrf is 5.5/6.5 µs, which represents the best result achieved for Group‐10 TMDs based optoelectronic device thus far. According to first‐principle density functional theory, the broad photoresponse ranging from visible to near‐infrared region is associated with the semiconducting characteristics of PtSe2 which has interstitial Se atoms within the PtSe2 layers. It is also revealed that the PtSe2/GaAs photodetector does not exhibit performance degradation after six weeks in air. The generality of the above good results suggests that the vertically aligned PtSe2 is an ideal material for high‐performance optoelectronic systems in the future.  相似文献   

5.
Here, we report our method on enhancing the photocatalytic effect with PtSe2 and TiO2 treated large area graphene (LAG). The LAG was growth on copper foil at a low temperature (500 °C) under atmospheric pressure by chemical vapor deposition (CVD) method. A facile, fast ultrasonic method was then used to successfully synthesize PtSe2-LAG/TiO2 nanocomposites. The composites that were obtained were characterized using X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), Raman spectroscopic analysis, and X-ray photoelectron spectroscopy (XPS). UV–vis diffuse reflectance spectra (DRS) analyses were also performed, and the catalytic behavior was investigated by the decomposition of methylene blue (MB).The as-prepared LAG with a Raman D band was obtained, and graphene layers can be clearly seen in High-Resolution Transmission Electron Microscopy (HRTEM) images. The degradation performance of the MB solution was determined via UV–vis spectrophotometry. This improved photocatalytic activity is a result of the positive synergetic effect between PtSe2 and LAG in the heterogeneous photocatalyst. In this study, the LAG behaves as an electron transfer agent, contributor, collector, and source of active adsorption sites. The optical properties were also observed to be affected by the different weight ratios of the LAG in the composites by observing their respective band gaps from diffuse reflectance spectra.  相似文献   

6.
The very recently rediscovered group‐10 transition metal dichalcogenides (TMDs) such as PtS2 and PtSe2, have joined the 2D material family as potentially promising candidates for electronic and optoeletronic applications due to their theoretically high carrier mobility, widely tunable bandgap, and ultrastability. Here, the first exploration of optoelectronic application based on few‐layered PtS2 using h‐BN as substrate is presented. The phototransistor exhibits high responsivity up to 1.56 × 103 A W?1 and detectivity of 2.9 × 1011 Jones. Additionally, an ultrahigh photogain ≈2 × 106 is obtained at a gate voltage V g = 30 V, one of the highest gain among 2D photodetectors, which is attributed to the existence of trap states. More interestingly, the few‐layered PtS2 phototransistor shows a back gate modulated photocurrent generation mechanism, that is, from the photoconductive effect dominant to photogating effect dominant via tuning the gate voltage from the OFF state to the ON state. Such good properties combined with gate‐controlled photoresponse of PtS2 make it a competitive candidate for future 2D optoelectronic applications.  相似文献   

7.
Platinum diselenide (PtSe2) field-effect transistors with ultrathin channel regions exhibit p-type electrical conductivity that is sensitive to temperature and environmental pressure. Exposure to a supercontinuum white light source reveals that positive and negative photoconductivity coexists in the same device. The dominance of one type of photoconductivity over the other is controlled by environmental pressure. Indeed, positive photoconductivity observed in high vacuum converts to negative photoconductivity when the pressure is raised. Density functional theory calculations confirm that physisorbed oxygen molecules on the PtSe2 surface act as acceptors. The desorption of oxygen molecules from the surface, caused by light irradiation, leads to decreased carrier concentration in the channel conductivity. The understanding of the charge transfer occurring between the physisorbed oxygen molecules and the PtSe2 film provides an effective route for modulating the density of carriers and the optical properties of the material.  相似文献   

8.
TiO2 is a very promising photocatalytic material due to its merits including low cost, nontoxicity, high chemical stability, and photocorrosion resistance. However, it is also known that TiO2 is a wide bandgap material, and it is still challenging to achieve high photocatalytic performance driven by solar light. In this paper, silicon‐doped TiO2 nanorod arrays are vertically grown on fluorine‐doped tin oxide substrates and then are heat treated both in air and in vacuum. It is found that the silicon doping together with the heat treatment brings synergic effect to TiO2 nanorod films by increasing the crystallinity, producing abundant oxygen vacancies, enhancing the hydrophilicity as well as improving the electronic properties. When used as photoanodes in photoelectrochemical water splitting, under the condition of AM 1.5G simulated solar irradiation and without using any cocatalysts, these nanorod films show photocurrent density as high as 0.83 mA cm?2 at a potential of 1.23 V versus reversible hydrogen electrode, which is much higher than that of the TiO2 nanorod films without doping or heat treating. The silicon‐doped TiO2 nanorod array films described in this paper are envisioned to provide valuable platforms for supporting catalysts and cocatalysts for efficient solar‐light‐assisted water oxidation and other solar‐light‐driven photocatalytic applications.  相似文献   

9.
Directional strain sensing is essential for advanced sensor applications in the field of human-machine interfaces and healthcare. Here, the angle dependent anisotropic strain sensitivity caused by charge carriers percolating through cross-linked gold nanoparticle (GNP) networks is studied and these versatile materials are used for the fabrication of wearable triaxial pulse and gesture sensors. More specifically, the anisotropic response of 1,9-nonanedithiol cross-linked GNP films is separated into geometric and piezoresistive contributions by fitting the measured data with an analytic model. Hereby, piezoresistive coefficients of g11 ∼ 32 and g12 ∼ 21 are extracted, indicating a slightly anisotropic response behavior of the GNP-based material. To use the material for healthcare applications, arrangements of three GNP transducers are patterned lithographically and fully embedded into a highly flexible silicone polymer (Dragon Skin 30). The new encapsulation method ensures good and robust electrical contacts and enables facile handling and protection from external influences. A facile read-out with wireless data transmission using off-the-shelf electrical components underlines the great potential of these devices for applications as skin-wearable healthcare sensors.  相似文献   

10.
李翠平 《光电子快报》2010,6(4):284-287
C-axis oriented ZnO films are deposited on polished diamond substrates in various O2/(O2+Ar) ratios using the radio frequency (RF) magnetron sputtering technique and are subsequently annealed in oxygen ambience under the same conditions. Structural, morphologic and electrical properties of ZnO films are characterized by X-ray diffraction (XRD), high-resistance instrument, energy dispersive X-ray spectroscopy (EDS) and scanning electronic microscopy (SEM). As the O2/(O2+Ar) ratio increasing from 1/12 to 5/12, the crystallinity of the as grown ZnO films becomes better and the electrical resistivity increases slowly. After annealing, the ZnO films deposited in O2/(O2+Ar) =1/12 and 3/12 are improved greatly in crystallinity, and their electrical resistivity is enhanced by two orders of magnitude, while those deposited in O2/(O2+Ar) =5/12 are scarcely changed in crystallinity, and their resistivity is only increased by one order. In addition, the ZnO films deposited in O2/(O2+Ar) =3/12 and annealed in oxygen are with the best crystal quality and the highest resistivity.  相似文献   

11.
We have grown thin carbon films by pulsed laser deposition and have investigated the extent to which the properties of such films, as well as the processes responsible for these properties, are laser wavelength dependent. Films were grown by ablating material from a graphite target onto room temperature Si(100) substrates with 1064 and 248 nm laser radiation. The films were analyzed byin situ electron energy loss spectroscopy and byex situ Raman spectroscopy. The results indicated that films grown with 1064 nm ablation were graphitic, while those grown with 248 nm radiation were diamond-like. We have also examined the mass and kinetic energy distributions of the particles ejected from graphite by the two laser wavelengths. The results indicated that irradiation of graphite with 1064 nm laser radiation results in the ejection of a series of carbon cluster ions C n + (1 ≤ n ≤ 30) with mean kinetic energies less than 5 eV. Ablation of graphite with 248 nm radiation results in the ejection of primarily C 2 + and C 3 + with mean kinetic energies of 60 and 18 eV, respectively. These results suggest that large, low energy clusters produce graphitic films, while small, high energy clusters produce films of diamond-like carbon.  相似文献   

12.
Complex oxides with perovskite structure are the ideal arena to study a plethora of physical properties including superconductivity, ferromagnetism, ferroelectricity, piezoelectricity and more. Among them, transition metal oxides are especially relevant since they present large electronic correlations leading to a strong competition between lattice, charge, spin, and orbital degrees of freedom. In particular, manganese perovskites oxides exhibit half‐metallic character and colossal magnetoresistive response rendering them as the ideal materials to develop novel concepts of oxide‐electronic devices and for the study of fundamental physical interactions. Due to the close similarity between kinetic energy of charge carriers and Coulomb repulsion, tiny perturbations caused by small changes in temperature, magnetic or electric fields, strain and so forth may drastically modify the magnetic and transport properties of these materials. In particular clarifying the role of interfacial strain in manganite thin films is interesting not only for device applications but also for basic understanding of physical interactions. A better comprehension of such strongly correlated systems might lead to control the different degrees of freedom in a near future contributing to the development of the so called orbitronics, i.e. controlling and modifying at will the orbital orientation of the 3d levels in transition metals. Here we reveal the importance of interfacial strain in high quality epitaxial thin films of La2/3Ca1/3MnO3 (LCMO), grown on top of SrTiO3 (STO) and NdGaO3 (NGO) (001)‐oriented substrates. We show that in such systems interfacial strain due to lattice mismatch lifts the degeneracy of the eg and t2g orbitals close to the film/substrate interface inducing Jahn‐Teller like distortions and promoting selective orbital occupancy and the appearance of an orbital glass insulating state in an otherwise ferromagnetic metallic material. These results highlight the role of strain and identify it as a key parameter in orbital control.  相似文献   

13.
2D van der Waals atomic crystal materials have great potential for use in future nanoscale electronic and optoelectronic applications owing to their unique properties such as a tunable energy band gap according to their thickness or number of layers. Recently, black phosphorous (BP) has attracted significant interest because it is a single‐component material like graphene and has high mobility, a direct band gap, and exhibits ambipolar transition behavior. This study reports on a charge injection memory field‐effect transistor on a glass substrate, where few‐layer BPs act as the active channel and charge trapping layers, and Al2O3 films grown by atomic layer deposition act as the tunneling and blocking layers. Because of the ambipolar properties of BP nanosheets, both electrons and holes are involved in the charge trapping process, resulting in bilateral threshold voltage shifts with a large memory window of 22 V. Finally, a memory circuit of a resistive‐load inverter is implemented that converts analog signals (current) to digital signals (voltage). Such a memory inverter also shows a clear memory window and distinct memory on/off switching characteristics.  相似文献   

14.
A simple and versatile technique has been developed to prepare TiO2 and TiO2‐based composite (TiO2–CdS and TiO2–Au) nanotube arrays. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray (EDX) analysis, X‐ray diffraction (XRD), thermogravimetric analysis (TGA), UV‐vis spectroscopy, and photoluminescence (PL) spectroscopy are used to characterize their morphology, structure, composition, and properties. The TiO2–CdS nanotubes contained many TiO2 and CdS quantum dots and exhibited a novel PL band in the blue‐wavelength range. The reported strategy will be useful for fabricating nanoparticle–nanoparticle composite nanostructure arrays, which are suitable for applications in catalysis, chemical sensors, nanoelectrodes, and nanodevices.  相似文献   

15.
Nanoscale spinel lithium manganese oxide is of interest as a high‐rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn2O4) between 20 and 200 nm in thickness by room‐temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn2O4 thin films in electrolytes containing Li+, Na+, K+, and Mg2+ are investigated. A unified electrochemical band‐diagram (UEB) analysis of LiMn2O4 informed by screened hybrid density functional theory calculations is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn2O4. It is shown that the incorporation of Li+ or other cations into the host manganese dioxide spinel structure (λ‐MnO2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn2O4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn2O4 arises from bulk electronic charge‐switching which does not require compensating cation mass transport. The hybrid ALD‐electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materials for ion‐incorporation charge storage.  相似文献   

16.
A simple, solution‐processed route to the development of MoOx thin‐films using oxomolybdate precursors is presented. The chemical, structural, and electronic properties of these species are characterized in detail, within solution and thin‐films, using electrospray ionization mass spectrometry, grazing angle Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, X‐ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. These analyses show that under suitable deposition conditions the resulting solution processed MoOx thin‐films possess the appropriate morphological and electronic properties to be suitable for use in organic electronics. This is exemplified through the fabrication of poly(3‐hexylthiophene):[6,6]‐phenyl C61 butyric acid methyl ester (P3HT:PC61BM) bulk heterojunction (BHJ) solar cells and comparisons to the traditionally used poly(3,4‐ethyldioxythiophene)/poly(styrenesulfonate) anode modifying layer.  相似文献   

17.
In the work, the results on the analysis of phase transitions in amorphous films Y-Ba-Cu-O under their annealing are presented for the purpose to obtain high-temperature superconducting film samples intended for microwave applications. The analysis and choice of material for substrates have been carried out with the purpose to create integrated microwave circuits, using the high-temperature superconducting films. The method of producing the epitaxial Y-Ba-Cu-O films for microwave electronics has been justified. With the purpose of creation of the hybrid integrated circuits with application of high-temperature superconductor films, the data on producing the ohmic contacts with low transitional resistance in a system metal - high temperature superconducting film are presented. The analysis of critical parameters and microwave properties of YBa2Cu3O7 films under their annealing in vacuum has been carried out. The justification of temperature regimes of contact photolithography concerning the YBa2Cu3O7?δ films is given. The influence of oxygen implantation on structural properties and critical parameters of YBa2Cu3O7?δ is demonstrated.  相似文献   

18.
A study of electrochemical Li insertion combined with structural and textural analysis enabled the identification and quantification of individual crystalline and amorphous phases in mesoporous TiO2 films prepared by the evaporation‐induced self‐assembly procedure. It was found that the properties of the amphiphilic block copolymers used as templates, namely those of a novel poly(ethylene‐co‐butylene)‐b‐poly(ethylene oxide) polymer (KLE) and commercial Pluronic P123 (HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H), decisively influence the physicochemical properties of the resulting films. The KLE‐templated films possess a 3D cubic mesoporous structure and are practically amorphous when calcined at temperatures below 450 °C, but treatment at 550–700 °C provides a pure‐phase (anatase), fully crystalline material with intact mesoporous architecture. The electrochemically determined fraction of crystalline anatase increases from 85 to 100 % for films calcined at 550 and 700 °C, respectively. In contrast, the films prepared using Pluronic P123, which also show a 3D cubic pore arrangement, exhibit almost 50 % crystallinity even at a calcination temperature of 400 °C, and their transformation into a fully crystalline material is accompanied by collapse of the mesoporous texture. Therefore, our study revealed the significance of using suitable block‐copolymer templates for the generation of mesoporous metal oxide films. Coupling of both electrochemical and X‐ray diffraction methods has shown to be highly advisable for the correct interpretation of structure properties, in particular the crystallinity, of such sol–gel derived films.  相似文献   

19.
a-Si:H films with inclusions of (SiH2)n clusters or Si nanocrystals have been grown by magnetron-assisted SiH4 decomposition (dc-MASD). The films were characterized by the microstructural parameter R=0.7–1.0. Ultrasoft X-ray emission spectroscopy was applied to establish the effect of these inclusions on the increasing ordering of Si network. It is shown that, irrespective of the nature of the inclusions, their effect is strongest for films of intrinsic material deposited at high temperatures (up to 400°C).  相似文献   

20.
The morphological effects of the incorporation of C60 into blended thin‐films of poly(3‐hexylthiophene) and [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) are investigated. The results show that addition of C60 readily alters the growth‐rate and morphology of PCBM crystallites under different environmental conditions. The effect of C60 on the growth of large PCBM crystallites is thoroughly characterized using optical microscopy, electron microscopy and UV‐visible absorption spectroscopy. Results show that C60 incorporation modifies fullerene aggregation and crystallization and greatly reduces the average crystallite size at C60 loadings of ≈50 wt% in the fullerene phase. Organic field‐effect transistors (OFETs) are prepared to evaluate the electron mobility of PCBM/C60 films and organic solar cells (OSCs) are fabricated from mixed‐fullerene active layers to evaluate their performance. It is demonstrated that the use of fullerene mixtures in organic electronic applications is a viable approach to produce more stable devices and to control the growth of micrometer‐sized fullerene crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号