首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1318.8 nm/1338 nm同时振荡双波长Nd:YAG激光器   总被引:5,自引:2,他引:3  
通过双波长激光理论计算激光振荡的阈值条件,抑制强线1064nm振荡,成功实现了1318.8nm/1338nm NdYAG同时双波长激光准连续输出,当抽运功率为2015W时,双波长激光总平均输出功率为101W,电-光转换效率为5.01%,斜率效率为7.05%,激光输出功率不稳定度≤±5%.双波长激光中心波长分别在1318.8nm、1338.2nm处,谱线宽度(FWHM)分别为0.407nm、0.376nm.  相似文献   

2.
为了研究同步双波长激光器的输出特性,并解决其增益竞争问题,本文介绍了能同时输出准三能级激光和四能级激光的双波长激光器的理论模型,推导了双波长激光器输出功率的表达式。以理论模型为基础,首次设计了一种使用Nd∶GdVO4和Nd∶YVO4晶体为增益介质,879 nm激光二极管为泵浦源的腔内级联泵浦结构的同步双波长连续激光器,成功实现了912 nm的准三能级连续激光以及1064 nm的四能级连续激光同步输出,在最大15 W的泵浦功率下,得到912 nm的准三能级激光最大输出功率为0.65 W的,斜效率约为7 %,以及1064 nm的四能级激光的最大输出功率为1.58 W的,斜效率约为16.6 %。总的光-光转换效率为14.9 %。且实验发现,两块晶体间距不同会使两种波长的输出功率发生变化,两种波长之间存在竞争关系。  相似文献   

3.
通过双波长激光理论计算激光振荡的阈值条件,抑制强线 1064nm振荡,成功实现了1318. 8nm/1338nmNd∶YAG同时双波长激光准连续输出,当抽运功率为 2015W时,双波长激光总平均输出功率为 101W,电 光转换效率为 5. 01%,斜率效率为 7. 05%,激光输出功率不稳定度≤±5%。双波长激光中心波长分别在 1318. 8nm、1338. 2nm处,谱线宽度 (FWHM)分别为 0. 407nm、0. 376nm。  相似文献   

4.
通过双波长激光理论计算激光振荡的阈值条件,抑制强线1064nm振荡,成功实现了 1318. 8nm /1338nm Nd∶YAG同时双波长激光准连续输出,当抽运功率为2015W时,双波长激光总平均输出功率为101W,电2光转换效率为5. 01% ,斜率效率为7. 05% ,激光输出功率不稳定度≤ ±5%。双波长激光中心波长分别在1318. 8nm、1338. 2nm处,谱线宽度( FWHM)分别为0. 407nm、0. 376nm。  相似文献   

5.
开展了1 915 nm高功率、高效率、窄谱宽输出的掺铥光纤激光器(TDFL)研究。基于全光纤主振荡功率放大(MOPA)结构,采用40 W的793 nm半导体激光器泵浦纤芯直径25 m的双包层大模场面积(LMA)掺铥光纤,获得了最高功率12.1 W的1 915 nm窄谱宽连续种子激光输出。将8 W种子光注入掺铥光纤放大器,在793 nm激光泵浦功率为142.9 W时,获得了平均功率90 W的激光输出,其中心波长为1 915.051 nm,3 dB谱宽仅为94 pm,斜率效率为60.2%,光-光转换效率达63.0%。该系统在40 min运行考核时间内输出激光稳定性良好。  相似文献   

6.
通过LD端面抽运Nd∶YAG激光腔镜膜系的合理设计,抑制Nd∶YAG晶体最强跃迁对应的1064 nm波长和相邻的1319 nm波长的激光振荡,成功实现了1338 nm单波长激光输出。实验中对比了平平和平凹腔型,研究了连续运转和声光调Q模式下的激光输出。连续运转模式时,在12.9 W的抽运功率下,获得了最高3.25 W的1338 nm激光输出;声光调Q模式下,1338 nm激光的平均输出功率和脉冲宽度随着重复频率的减小而下降。在12.9 W的抽运功率下,当声光调Q重复频率从15 kHz减少到5 kHz,平均输出功率由2.8 W降低到1.9 W,对应的脉冲峰值功率由1.7 kW升高到5.4 kW。  相似文献   

7.
使用连续Nd:YAG输出1319nm,分析了波长1319nm激光的辐射跃迁能级,论述了抑制1064nm激光的生成从而提高1319nm激光输出等关键技术,研究了光学镜片的镀膜参数与腔型结构,实现1319nm激光连续输出最高功率43W。  相似文献   

8.
偏振控制C波段波长可调谐掺铒光纤激光器   总被引:1,自引:1,他引:1  
贺虎成  杨玲珍  王云才 《中国激光》2006,33(12):597-1600
报道了一种结构简单的波长可调谐掺铒光纤激光器。该光纤激光器由增益平坦型掺铒光纤放大器(EDFA)、偏振相关光隔离器、光纤偏振控制器及输出耦合器组成。利用光纤偏振控制器和偏振相关光隔离器作为波长调谐器件,实现了光纤激光器的波长可调谐输出及双波长输出。利用琼斯矩阵理论分析了光纤激光器腔内不同波长的损耗与偏振控制器状态的关系,指出通过调节光纤偏振控制器,光纤激光器可以实现波长可调谐输出,同时阐述了光纤激光器双波长输出的机制。实验上获得了中心波长在1542~1564nm连续可调,平均功率大于2.6mW,边模抑制比大于35dB的连续激光输出。同时获得了波长为1549nm和1564nm的双波长连续激光输出。  相似文献   

9.
波长为1319 nm的连续输出Nd∶YAG激光器的研究   总被引:2,自引:1,他引:1  
介绍了一种波长为 1319nm的连续Nd∶YAG激光器 ,分析了 1319nm激光的辐射跃迁能级 ,论述了抑制10 6 4nm激光的生成从而提高 1319nm激光输出等关键技术 ,研究了光学镜片的镀膜参数与腔型结构 ,实现了 1319nm最高功率为 4 3W的激光连续输出  相似文献   

10.
双端抽运的30 W光纤激光器实验研究   总被引:1,自引:0,他引:1  
报道了双端抽运连续输出的掺Yb^3 双包层高功率光纤激光器。实验采用了中心波长在975nm附近的两种输出形式的半导体激光器(LD)作为抽运源,测量了不同抽运条件下的输出功率特性和光谱特性。在仅尾纤输出的半导体激光器抽运下获得了斜率效率为42%,峰值波长为1103.8nm的9.2W激光输出;在仅准直输出的半导体激光器抽运下获得了斜率效率为57%,峰值波长为1104.4nm的20.0W激光输出;当两个半导体激光器在双端同时抽运时,获得光纤激光最大输出功率为30.6W,输出峰值波长为1108.4nm,以及49%的总体光一光转换效率。  相似文献   

11.
张仁栗  张彬  亓岩  颜博霞  毕勇 《激光与红外》2016,46(9):1073-1175
成功搭建了高功率1018 nm连续掺镱光纤激光器,通过合理地择增益光纤长度,有效地抑制了ASE。实验获得了300 W最高输出功率,斜率效率为81%。  相似文献   

12.
为了获得窄线宽、高功率、长波长(相对于1030nm~1080nm)的1120nm光纤激光器,采用普通单模掺镱光纤和一对光纤布喇格光栅构建了该光纤激光器的谐振腔,为保证抽运光的完全吸收和避免非线性效应,对有源光纤的最佳长度进行了理论分析和实验验证。结果表明,激光器的阈值抽运功率为40mW、注入抽运功率为265mW时,激光器输出信号光功率35mW,光光转换效率为13.2%,激光器中心波长为1120.9nm,输出激光的谱线宽度为0.03nm。这种激光器的获得是因为采用了高反射率耦合输出光纤布喇格光栅、短谐振腔结构和低功率运转状态。该激光器可作为种子光注入光纤放大器。  相似文献   

13.
采用紧凑的直腔设计和精确的膜系设计, 实现了LD 侧面泵浦1 110 nm Nd:GGG 和腔内倍频的555 nm 激光.当泵浦功率为168 W时, 得到了25.5 W的1110 nm 连续激光输出.在10 kHz 的声光调Q 情况下, 应用II 类非临界相位匹配LiB3O5(LBO)倍频晶体, 得到了最大输出功率为3.1 W的555 nm 倍频光输出, 光-光转换效率为1.8 %, 相应的脉冲宽度为176 ns, 在水平和竖直方向上的M2因子分别为19.6 和21.3.  相似文献   

14.
报道了一台激光二极管(LD)侧面抽运的高功率连续1338 nm Nd∶YAG激光器.通过分析Nd∶YAG的跃迁谱线和相应的受激发射截面的特点,根据多跃迁谱线激光材料波长选择的耦合率条件,合理设计激光棒和腔镜的耦合率参数.激光谱线测量表明,成功抑制了1064 nm和1319 nm波长激光的振荡.以高功率808 nm激光二极管侧面抽运模块为抽运源,采用平-平腔结构,研究了耦合输出率分别为5.3%,7.4%和11%的输出镜的输出情况,比较分析了不同腔长对激光输出的影响.在抽运功率为555 W时,采用5.3%的耦合输出镜和20 cm腔长,获得大于100 W的1338 nm单一波长激光输出,光-光转换效率大于18%,斜率效率为35%,输出光束的M2因子为36.  相似文献   

15.
张春林  赵岭  李丽娜  张亮  王立军 《半导体光电》2004,25(6):437-439,444
理论分析了线型腔双包层光纤激光器的输出特性,包括光纤长度、光纤损耗及后腔镜反射率对激光输出功率和阈值泵浦功率的影响.设计了基于光纤光栅谐振腔的双包层光纤激光器,采用锥度光纤实现了泵浦模块与双包层光纤之间的低损耗连接,实现了全光纤化的掺Yb3 双包层光纤激光器,其阈值泵浦功率为300 mW,在泵浦入纤功率为17 W时达到了10.5 W的最大激光输出功率,斜率效率为62%.  相似文献   

16.
1550 nm高效窄线宽光纤激光器   总被引:1,自引:0,他引:1  
研制了一种采用双光纤光栅法布里-珀罗(FBG F-P)腔选模的线形腔结构窄线宽光纤激光器.激光器以高掺杂Er3 光纤为增益介质,结合非相干技术,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过2个短FBG F-P腔选模,产生了稳定的1 550 nm单频激光输出.采用两端976 nm LD抽运方式,阈值抽运光功率为11 mW,在抽运光功率为145 mW时输出信号光功率为73 mW.光-光转换效率为50%,斜率效率达55%.采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了10 km单模光纤延迟线,由于测量精度的限制,得到线宽小于10 kHz.研究表明,这种光纤激光器具有输出功率高、线宽窄和信噪比高的特点,可用于高精度的光纤传感器系统.  相似文献   

17.
A high Er3+-doped narrow linewidth fiber laser based on fiber Bragg grating Fabry-Perot cavity was demonstrated. The spatial hole burning effect was restrained by a fiber Faraday rotator. Two short fiber Bragg grating Fabry-Perot cavities as narrow bandwidth filters discriminated and selected laser longitudinal modes efficiently. A stable single-frequency 1534.83 nm laser was acquired. Pumped by two 976 nm laser diodes and two-ended output, the fiber laser exhibited a 12 mW threshold. Total 39.5 mW output power and one end 22 mW output power were obtained at the maximum 145 mW pump power. Optical-optical efficiency was 27% and slope efficiency was 29.7%. The output power seemed to be saturated when pump power increased. The 3 dB linewidth of the laser was less than 7.5 kHz, measured by the delayed self-heterodyne method with 15 km monomode fiber. The high power narrow linewidth fiber laser can be used in high resolution fiber sensor systems.  相似文献   

18.
利用激光二极管(LD)抽运Nd∶YVO4晶体产生914 nm谱线振荡,再通过腔内倍频技术获得457 nm激光输出,是获得大功率蓝光激光器的一条重要的技术路线,因而实现高效率运转的914 nm激光输出则是方案的关键。报道了激光二极管端面抽运Nd∶YVO4晶体、连续波运转的大功率914 nm准三能级激光器,方案中采用掺杂原子数分数为0.1%的低掺杂Nd∶YVO4晶体,有效地降低了热效应的影响,并通过准三能级理论模型的模拟计算选择了最佳晶体长度;通过对腔镜介质膜参数的适当控制,有效地抑制了波长为1064 nm和1342 nm的高增益谱线。实验中,914 nm激光器的阈值抽运功率仅为8.5 W,在31 W的抽运功率下914 nm激光输出功率高达7.2 W,激光器的斜率效率为32%,光-光转换效率为23.2%。  相似文献   

19.
为了得到1080 nm的小型化、高功率、连续型光纤激光器,以915 nm的半导体激光二极管(LD)作为泵浦源,由2个光纤光栅构成谐振腔;以12m掺镱双包层光纤作为增益介质,结合合束器、剥模器、准直器等光纤器件搭建了全光纤结构的激光器系统.当泵浦功率达到118 W时,实验得到了功率为80 W、光光转换效率为68%的连续且稳定的激光输出.将激光器系统组装到自行设计的紧凑型长方体铝制外壳内,光纤激光器总重量小于1.8 kg,体积为200 mm×160 mmx40 mm,能够稳定工作在-40~50℃环境下.  相似文献   

20.
基于光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器   总被引:12,自引:0,他引:12  
报道了采用双光纤光栅(FBG)法布里-珀罗(F-P)腔选模的线形腔结构窄线宽光纤激光器。激光器以高掺杂Er~(3 )光纤为增益介质,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过两个短光纤光栅法布里-珀罗腔选模,产生了稳定的1534.83 nm单频激光输出。激光器采用两支976 nm单模激光二极管(LD)抽运,两端输出。激光器阈值抽运光功率为12 mW,在总抽运光功率为145 mW时总输出信号光功率为39.5 mW,单端最高输出信号光功率为22 mW。光-光转换效率为27%,斜率效率为29.7%。随着抽运功率的增加,激光器输出功率趋于饱和。采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了15 km单模光纤延迟线,由于测量精度的限制,得到激光器的线宽小于7kHz。这种光纤激光器具有输出功率高、线宽窄、信噪比高的特点,可用于高精度的光纤传感系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号