首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless sensor and actor networks (WSANs) have been increasingly popular for environmental monitoring applications in the last decade. While the deployment of sensor nodes enables a fine granularity of data collection, resource-rich actor nodes provide further evaluation of the information and reaction. Quality of service (QoS) and routing solutions for WSANs are challenging compared to traditional networks because of the limited node resources. WSANs also have different QoS requirements than wireless sensor networks (WSNs) since actors and sensor nodes have distinct resource constraints.In this paper, we present, LRP-QS, a lightweight routing protocol with dynamic interests and QoS support for WSANs. LRP-QS provides QoS by differentiating the rates among different types of interests with dynamic packet tagging at sensor nodes and per flow management at actor nodes. The interests, which define the types of events to observe, are distributed in the network. The weights of the interests are determined dynamically by using a nonsensitive ranking algorithm depending on the variation in the observed values of data collected in response to interests. Our simulation studies show that the proposed protocol provides a higher packet delivery ratio and a lower memory consumption than the existing state of the art protocols.  相似文献   

2.
Wireless sensor and actor networks (WSANs) are characterized by the collective effort of heterogeneous nodes called sensors and actors. Sensor nodes collect information about the physical world, while actor nodes take action decisions and perform appropriate actions upon the environment. The collaborative operation of sensors and actors brings significant advantages over traditional sensing, including improved accuracy, larger coverage area and timely actions upon the sensed phenomena. However, to realize these potential gains, there is a need for an efficient transport layer protocol that can address the unique communication challenges introduced by the coexistence of sensors and actors. In this paper, a real-time and reliable transport (RT) protocol is presented for WSANs. The objective of the (RT) protocol is to reliably and collaboratively transport event features from the sensor field to the actor nodes with minimum energy dissipation and to timely react to sensor information with a right action. In this respect, the (RT) protocol simultaneously addresses congestion control and timely event transport reliability objectives in WSANs. To the best of our knowledge, this is the first research effort focusing on real-time and reliable transport protocol for WSANs. Performance evaluations via simulation experiments show that the (RT) protocol achieves high performance in terms of reliable event detection, communication latency and energy consumption in WSANs.  相似文献   

3.
柳飞 《电子技术》2014,(7):18-20
带有执行器的无线传感器网络是指在传统无线传感器网络中加入执行节点,形成传感器节点、执行节点和基站共同构成的三层监控网络。根据执行器在能量、计算能力和感知能力方面的优势,提出建立应用于事件调度的双环分簇算法。算法将执行器连接成双环结构,提升网络在线扩展能力的同时,也为无线传感器网络满足事件驱动构建基础。仿真实验证明,此算法能够有效降低网络能耗,随着节点数目的增加和监控领域的扩大,表现更加凸出。  相似文献   

4.
Wireless sensor and actor networks (WSANs) can be considered as a combination of a sensor network and an actor network in which powerful and mobile actor nodes can perform application specific actions based on the received data from the sensors. As most of these actions are performed collaboratively among the actors, inter-actor connectivity is one of the desirable features of WSANs. In this paper, we propose a novel distributed algorithm for establishing a connected inter-actor network topology. Considering initially disjoint sets of actors, our algorithm first initiates a search process by using the underlying sensor network in order to detect the possible sub-networks of actors in the region. After these sub-networks are detected, our algorithm pursues a coordinated actor movement in order to connect the sub-networks and thus achieve inter-actor connectivity for all the actors. This coordinated movement approach exploits the minimum connected dominating set of each sub-network when picking the appropriate actor to move so that the connectivity of each sub-network is not violated. In addition, the approach strives to minimize the total travel distance of actors and the messaging cost on both sensors and actors in order to extend the lifetime of WSAN. We analytically study the performance of our algorithm. Extensive simulation experiments validate the analytical results and confirm the effectiveness of our approach.  相似文献   

5.
无线传感反应网络是由大量传感节点和少量(可移动)资源丰富的反应节点构成.传感节点 负责收集外部环境信息,而反应节点对外部环境实施相应的操作.本文分析节点能量消耗模 型,求解出理想条件下单条路径上总能耗最小时的最优跳步数.在此基础上,提出了一种跳 步数自适应的路由算法HAR,用来实现数据收集的实时需求与能量消耗之间的平衡.仿真实验 表明:HAR算法在平衡能量消耗与时间延迟的性能上优于HBMECT算法,而且能较好地适用于 反应节点移动的情形.  相似文献   

6.
Sensor nodes are powered by battery and have severe energy constraints. The typical many‐to‐one traffic pattern causes uneven energy consumption among sensor nodes, that is, sensor nodes near the base station or a cluster head have much heavier traffic burden and run out of power much faster than other nodes. The uneven node energy dissipation dramatically reduces sensor network lifetime. In a previous work, we presented the chessboard clustering scheme to increase network lifetime by balancing node energy consumption. To achieve good performance and scalability, we propose to form a heterogeneous sensor network by deploying a few powerful high‐end sensors in addition to a large number of low‐end sensors. In this paper, we design an efficient routing protocol based on the chessboard clustering scheme, and we compute the minimum node density for satisfying a given lifetime constraint. Simulation experiments show that the chessboard clustering‐based routing protocol balances node energy consumption very well and dramatically increases network lifetime, and it performs much better than two other clustering‐based schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Cluster Based Routing Protocol for Mobile Nodes in Wireless Sensor Network   总被引:1,自引:1,他引:0  
Mobility of sensor nodes in wireless sensor network (WSN) has posed new challenges particularly in packet delivery ratio and energy consumption. Some real applications impose combined environments of fixed and mobile sensor nodes in the same network, while others demand a complete mobile sensors environment. Packet loss that occurs due to mobility of the sensor nodes is one of the main challenges which comes in parallel with energy consumption. In this paper, we use cross layer design between medium access control (MAC) and network layers to overcome these challenges. Thus, a cluster based routing protocol for mobile sensor nodes (CBR-Mobile) is proposed. The CBR-Mobile is mobility and traffic adaptive protocol. The timeslots assigned to the mobile sensor nodes that had moved out of the cluster or have not data to send will be reassigned to incoming sensor nodes within the cluster region. The protocol introduces two simple databases to achieve the mobility and traffic adaptively. The proposed protocol sends data to cluster heads in an efficient manner based on received signal strength. In CBR-Mobile protocol, cluster based routing collaborates with hybrid MAC protocol to support mobility of sensor nodes. Schedule timeslots are used to send the data message while the contention timeslots are used to send join registration messages. The performance of proposed CBR-Mobile protocol is evaluated using MATLAB and was observed that the proposed protocol improves the packet delivery ratio, energy consumption, delay and fairness in mobility environment compared to LEACH-Mobile and AODV protocols.  相似文献   

8.
Wireless sensor and actor networks (WSANs) are more promising and most addressing research field in the area of wireless sensor networks in recent scenario. It composed of possibly a large number of tiny, autonomous sensor devices and resources rich actor nodes equipped with wireless communication and computation capabilities. Actors collect sensors’ information and respond collaboratively to achieve an application specific mission. Since actors have to coordinate their operation, a strongly connected inter-actor network would be required at all the time in the network. Actor nodes may fail for many reasons (i.e. due of battery exhaustion or hardware failure due to hash environment etc.) and failures may convert connected network into disjoint networks. This can hinder sometimes not only the performance of network but also degrade the usefulness and effectiveness of the network. Thus, having a partitioning detection and connectivity restoration procedure at the time of failure occurs in the network is crucial for WSANs. In this paper, we review the present network partitioning recovery approaches and provide an overall view of this study by summarizing previous achievements.  相似文献   

9.
Wireless sensor and actor networks: research challenges   总被引:46,自引:0,他引:46  
Ian F.  Ismail H.   《Ad hoc Networks》2004,2(4):351-367
Wireless sensor and actor networks (WSANs) refer to a group of sensors and actors linked by wireless medium to perform distributed sensing and acting tasks. The realization of wireless sensor and actor networks (WSANs) needs to satisfy the requirements introduced by the coexistence of sensors and actors. In WSANs, sensors gather information about the physical world, while actors take decisions and then perform appropriate actions upon the environment, which allows a user to effectively sense and act from a distance. In order to provide effective sensing and acting, coordination mechanisms are required among sensors and actors. Moreover, to perform right and timely actions, sensor data must be valid at the time of acting. This paper explores sensor-actor and actor-actor coordination and describes research challenges for coordination and communication problems.  相似文献   

10.
We propose an opportunistic routing protocol for wireless sensor networks designed to work on top of an asynchronous duty-cycled MAC. Opportunistic routing can be very effective when used with asynchronous duty-cycled MAC because expected waiting time of senders—when they stay on active mode and transmit packet streams—is significantly reduced. If there are multiple sources, energy consumption can be reduced further through in-network aggregation. The idea proposed in this paper is to temporarily increase duty cycle ratio of nodes holding packets, in order to increase chance of in-network aggregation and thus reduce energy consumption and extend network lifetime. In the proposed protocol called opportunistic routing with in-network aggregation (ORIA), whenever a node generates a packet or receives a packet to forward, it waits for a certain amount of time before transmitting the packet. Meanwhile, the node increases its duty cycle ratio, hoping that it receives packets from other nodes and aggregate them into a single packet. Simulation results show that ORIA saves considerable amount of energy compared to general opportunistic routing protocols, as well as tree-based protocols.  相似文献   

11.
Underwater wireless sensor networks (UWSNs) consist of a group of sensors that send the information to the sonobuoys at the surface level. Void area, however, is one of the challenges faced by UWSNs. When a sensor falls in a void area of communication, it causes problems such as high latency, power consumption, or packet loss. In this paper, an energy‐efficient void avoidance geographic routing protocol (EVAGR) has been proposed to handle the void area with low amount of energy consumption. In this protocol, a suitable set of forwarding nodes is selected using a weight function, and the data packets are forwarded to the nodes inside the set. The weight function includes the consumed energy and the depth of the candidate neighboring nodes, and candidate neighboring node selection is based on the packet advancement of the neighboring nodes toward the sonobuoys. Extensive simulation experiments were performed to evaluate the efficiency of the proposed protocol. Simulation results revealed that the proposed protocol can effectively achieve better performance in terms of energy consumption, packet drop, and routing overhead compared with the similar routing protocol.  相似文献   

12.
Wireless sensor networks have attracted significant interest for various scientific, military, and e-health applications. Recently a new class of sensor networks ??sensor/actor networks?? has been introducing new research challenges due to the unique coordination requirements among sensors and actors. In sensor/actor networks, actors are the nodes that have the capability to move in the field, equipped with powerful devices and can respond to the events of interest. With this capability, autonomous operation of the network is possible without a centralized controlling mechanism. This, however, requires the network to apply cooperative mechanism to decide when and how monitoring is done to track the event and how the event will be responded. In this regard, little work has been done in terms of co-existing Push and Pull data flows in the network. In this paper, we propose an Adaptive Pull?CPush (APP) based Event Tracking approach that allows sensor-to-actor communication as well as actors coordination in response to the events occurred. APP proposes two models of sensors organization: region-based organization (RAPP) and neighbor-based organization (NAPP) to alert nodes in the vicinity of reported event. APP exploits the mobility of actor nodes to form dynamic responsibility clusters, thus ensuring an event specific response to emergencies. Routing in APP is based on Routing by Adaptive Targeting (RAT), which is a delay-constrained geographical routing protocol. Simulation results reveal significant performance improvement in terms of response time and energy conservation.  相似文献   

13.
Reducing energy consumption and increasing network lifetime are the major concerns in Wireless Sensor Network (WSN). Increase in network lifetime reduces the frequency of recharging and replacing batteries of the sensor node. The key factors influencing energy consumption are distance and number of bits transmitted inside the network. The problem of energy hole and hotspot inside the network make neighbouring nodes unusable even if the node is efficient for data transmission. Energy Efficient Energy Hole Repelling (EEEHR) routing algorithm is developed to solve the problem. Smaller clusters are formed near the sink and clusters of larger size are made with nodes far from the sink. This methodology promotes equal sharing of load repelling energy hole and hotspot issues. The opportunity of being a Cluster Head (CH) is given to a node with high residual energy, very low intra cluster distance in case of nodes far away from the sink and very low CH to sink distance for the nodes one hop from the sink. The proposed algorithm is compared with LEACH, LEACH-C and SEP routing protocol to prove its novel working. The proposed EEEHR routing algorithm provides improved lifetime, throughput and less packet drop. The proposed algorithm also reduces energy hole and hotspot problem in the network.  相似文献   

14.
As a specific area of sensor networks, wireless in-home sensor networks differ from general sensor networks in that the network has nodes with heterogeneous resources and dissimilar mobility attributes. For example, sensor with different radio coverage, energy capacity, and processing capabilities are deployed, and some of the sensors are mobile and others are fixed in position. The architecture and routing protocol for this type of heterogeneous sensor networks must be based on the resources and characteristics of their member nodes. In addition, the sole stress on energy efficiency for performance measurement is not sufficient. System lifetime is more important in this case. We propose a hub-spoke network topology that is adaptively formed according to the resources of its members. A protocol named resource oriented protocol (ROP) was developed to build the network topology. This protocol principally divides the network operation into two phases. In the topology formation phase, nodes report their available resource characteristics, based on which network architecture is optimally built. We stress that due to the existence of nodes with limitless resources, a top-down appointment process can build the architecture with minimum resource consumption of ordinary nodes. In the topology update phase, mobile sensors and isolated sensors are accepted into the network with an optimal balance of resources. To avoid overhead of periodic route updates, we use a reactive strategy to maintain route cache. Simulation results show that the hub-spoke topology built by ROP can achieve much longer system lifetime.  相似文献   

15.
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention to support various applications for pollution monitoring, tsunami warnings, offshore exploration, tactical surveillance, etc. However, because of the peculiar characteristics of UWSNs, designing communication protocols for UWSNs is a challenging task. Particularly, designing a routing protocol is of the most importance for successful data transmissions between sensors and the sink. In this paper, we propose a reliable and energy‐efficient routing protocol, named R‐ERP2R (Reliable Energy‐efficient Routing Protocol based on physical distance and residual energy). The main idea behind R‐ERP2R is to utilize physical distance as a routing metric and to balance energy consumption among sensors. Furthermore, during the selection of forwarding nodes, link quality towards the forwarding nodes is also considered to provide reliability and the residual energy of the forwarding nodes to prolong network lifetime. Using the NS‐2 simulator, R‐ERP2R is compared against a well‐known routing protocol (i.e. depth‐based routing) in terms of network lifetime, energy consumption, end‐to‐end delay and delivery ratio. The simulation results proved that R‐ERP2R performs better in UWSNs.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

17.
Communication and Coordination in Wireless Sensor and Actor Networks   总被引:3,自引:0,他引:3  
In this paper, coordination and communication problems in wireless sensor and actor networks (WSANs) are jointly addressed in a unifying framework. A sensor-actor coordination model is proposed based on an event-driven partitioning paradigm. Sensors are partitioned into different sets, and each set is constituted by a data-delivery tree associated with a different actor. The optimal solution for the partitioning strategy is determined by mathematical programming, and a distributed solution is proposed. In addition, a new model for the actor-actor coordination problem is introduced. The actor coordination is formulated as a task assignment optimization problem for a class of coordination problems in which the area to be acted upon needs to be optimally split among different actors. An auction-based distributed solution of the problem is also presented. Performance evaluation shows how global network objectives, such as compliance with real-time constraints and minimum energy consumption, can be achieved in the proposed framework with simple interactions between sensors and actors that are suitable for large-scale networks of energy-constrained devices.  相似文献   

18.
Handling Mobility in Wireless Sensor and Actor Networks   总被引:1,自引:0,他引:1  
In Wireless Sensor and Actor Networks (WSANs), the collaborative operation of sensors enables the distributed sensing of a physical phenomenon, while actors collect and process sensor data and perform appropriate actions. WSANs can be thought of as a distributed control system that needs to timely react to sensor information with an effective action. In this paper, coordination and communication problems in WSANs with mobile actors are studied. First, a new location management scheme is proposed to handle the mobility of actors with minimal energy expenditure for the sensors, based on a hybrid strategy that includes location updating and location prediction. Actors broadcast location updates limiting their scope based on Voronoi diagrams, while sensors predict the movement of actors based on Kalman filtering of previously received updates. The location management scheme enables efficient geographical routing, and based on this, an optimal energy-aware forwarding rule is derived for sensor-actor communication. Consequently, algorithms are proposed that allow controlling the delay of the data-delivery process based on power control, and deal with network congestion by forcing multiple actors to be recipients for traffic generated in the event area. Finally, a model is proposed to optimally assign tasks to actors and control their motion in a coordinated way to accomplish the tasks based on the characteristics of the events. Performance evaluation shows the effectiveness of the proposed solution.  相似文献   

19.
In this paper, we discuss an interference aware multichannel MAC (IAMMAC) protocol assign channels for communication in wireless sensor‐actor networks. An actor acts as a cluster head for k‐hop sensors and computes the shortest path for all the sensors. Then, the actor partitions the cluster into multiple subtrees and assigns a noninterference channel to each subtree. The actor 1‐hop sensors are represented as relay nodes. The actor selects a relay node as a backup cluster head (BCH) based on the residual energy and node degree. After selecting a BCH from the relay nodes, the actor broadcast this information to the remaining relay nodes using the common control channel. The relay sensors use the same channel of BCH to communicate with it. However, the other cluster members do not change their data channel. Further, interference‐aware and throughput‐aware multichannel MAC protocol is also proposed for actor–actor coordination. The performance of the proposed IAMMAC protocol is analyzed using standard network parameters such as packet delivery ratio, goodput, end‐to‐end delay, and energy dissipation in the network. The obtained simulation results indicate that the IAMMAC protocol has superior performance as compared with the existing MAC protocols. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.

The wireless sensor network based IoT applications mainly suffers from end to end delay, loss of packets during transmission, reduced lifetime of sensor nodes due to loss of energy. To address these challenges, we need to design an efficient routing protocol that not only improves the network performance but also enhances the Quality of Service. In this paper, we design an energy-efficient routing protocol for wireless sensor network based IoT application having unfairness in the network with high traffic load. The proposed protocol considers three-factor to select the optimal path, i.e., lifetime, reliability, and the traffic intensity at the next-hop node. Rigorous simulation has been performed using NS-2. Also, the performance of the proposed protocol is compared with other contemporary protocols. The results show that the proposed protocol performs better concerning energy saving, packet delivery ratio, end-to-end delay, and network lifetime compared to other protocols.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号