首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
作为超材料的重要组成部分,介质层是影响超材料响应特性的关键因素.固定超材料的尺寸和表层金属图形,通过理论推导和仿真模拟详细分析了在太赫兹波段下介质层的介电常数和厚度两个参数对超材料响应特性的控制规律,并首次确定了响应频率与介电常数的关系方程.结果表明,在其他参数不变的情况下,超材料的响应频率主要取决于介质层的介电常数的实部大小,而其吸收率则主要取决于介质层的厚度.据此,提出一种设计超材料的新方法:首先将设计要求的响应频率代入频率方程计算出相应介质层的介电常数,由此挑选合适的介质材料;然后固定介电常数、调节介质层厚度,获得在特定频率具有特定吸收率的超材料.  相似文献   

2.
以实现宽谱减反介质复合纳米结构表面的高 效单结GaInP太阳电池为目标,利用严格耦合波分析理论, 仿真研究了该电池表面的介质复合纳米结构对太阳电池宽谱减反、归一化吸收、最大化理想 效率的影响。该介质复 合纳米结构从上往下依次为SiO2纳米锥、SiO2介质层和SiNx介质层,通过对SiO2纳米锥占空比、深宽比以及对SiO2和SiNx介质层厚度等参数的系列仿真最终优化出适用于单结Ga InP电池的表面结构。结果表明:当SiO2纳米锥底部 直径D=550nm、高度H=650 nm、SiN x介质层厚度为60 nm时电池具有最高的 最大化理想转换效率为28.58%。上述结果为后期实验以及该类电池 实现规模化生产奠定了基础。  相似文献   

3.
基于超薄多层介质诱饵温度沿壁厚方向相同的假设,根据质量与能量守恒原理并结合多层介质材料的热物性及厚度参数,推导了多层介质等效为单层介质材料的热物性参数.考虑了热传导、太阳和地球对空间自旋及三轴稳定目标的加热、目标外表面辐射散热和内壁面元间的辐射换热,根据节点网络法建立了传热差分方程,并利用Gauss-Seidel迭代法...  相似文献   

4.
三维复杂介质结构高精度的几何建模和高质量的离散网格数据文件是应用体积分方程矩量法(VIE-MoM)分析其电磁问题的重要前提.借助商用CAD建模软件,针对复杂多层非均匀介质结构的特点,采取了一种由面到体的几何建模思路快速地建立其三维实体几何模型,有效地解决了非均匀介质突变表面上四面体网格的匹配问题,从而实现对实体模型的快速网格离散,获取高质量的四面体网格数据文件.对双层半球壳、双层直锥形、正切卵形天线罩等几种多层介质结构的建模和网格剖分实例表明,采用本文所述方法,在不同形状的介质交界面上都能够实现优良的网格匹配效果,可为VIE-MoM计算复杂多层介质电磁问题提供高质量的网格数据文件.  相似文献   

5.
辛艳辉  袁合才  辛洋 《电子学报》2018,46(11):2768-2772
基于泊松方程和边界条件,推导了对称三材料双栅应变硅金属氧化物半导体场效应晶体管(MOSFET:metal oxide semiconductor field effect transistor)的表面势解析解.利用扩散-漂移理论,在亚阈值区电流密度方程的基础上,提出了亚阈值电流与亚阈值斜率二维解析模型.分析了沟道长度、功函数差、弛豫SiGe层的Ge组份、栅介质层的介电常数、应变硅沟道层厚度、栅介质高k层厚度和沟道掺杂浓度等参数对亚阈值性能的影响,并对亚阈值性能改进进行了分析研究.研究结果为优化器件参数提供了有意义的指导.模型解析结果与DESSIS仿真结果吻合较好.  相似文献   

6.
三层介质光纤包层模色散方程及包层HE/EH模   总被引:3,自引:0,他引:3  
利用解析法研究了Tsao和Erdogan关于3层介质光纤模型的包层模色散方程,对2个色散方程的等价性给出了证明。在研究长周期光纤光栅(LPFG)中,对传播常数的计算应选用Tsao给出的方程,在计算与场方程有关的量时应选用Erdogan的方程。计算了部分包层模的传播常数,给出了区分包层HE/EH模的方法。  相似文献   

7.
匹配介质三层漫射方程的时域研究   总被引:1,自引:0,他引:1  
文中使用外推边界条件,根据漫射方程理论,精确给出了匹配介质中频域状态下三层体系漫射方程格林函数的解,并对频域进行傅里叶变换,计算出时域的表面反射率。为了验证我们的理论,我们使用蒙特卡罗方法进行仿真研究,结果表明我们的理论研究不仅和蒙特卡罗方法高度一致,而且可以兼容A. Kienle的两层体系,还可以解决两层体系和半无限厚介质的问题。  相似文献   

8.
FEM/BEM混合法计算各向异性不均匀介质柱电磁散射   总被引:1,自引:0,他引:1  
应用有限元-边界元(FEM/BEM)混合法计算二维各向异性不均匀介质柱电磁散射,对介质柱内、外区域分别采用有限元和边界元法进行分析,然后应用边界条件建立部分稀疏部分满填充的矩阵方程.应用内观法结合多波前法求解该矩阵方程,分别计算了均匀分布和不均匀分布的各向异性介质柱的雷达散射截面.数值计算表明,有限元-边界元混合法在分析和计算不均匀开放域电磁问题时有一定的优势.  相似文献   

9.
采用分离变量的方法,推出了具有径向导电面、多层普通介质填充的圆柱波导各层电磁场之间的递推关系,得到了其模式场解,并进一步推出了此波导的本征方程。将其应用于只有一种介质填充情况,结果和有关文献相同。作为示例,文中给出了填充两层介质时,一些模式的色散特性的计算结果。  相似文献   

10.
利用多层快速多极子方法(MLFMA)分析三维导体介质复合结构的电磁辐射与散射特性.根据等效原理,介质表面构造Poggio-Miller-Chang-Harrington-Wu(PMCHW)方程,导体表面建立电场积分方程(EFIE).分析了含介质目标MLFMA算法中远区组矩阵矢量相乘运算以及有耗媒质空间中格林函数的平面波展开.利用该方法研究了涂敷目标电磁散射特性以及天线罩对直线阵天线辐射特性的影响.MLFMA的应用降低了计算量和存储量,实现了对电大尺寸目标快速、准确的求解.  相似文献   

11.
We present a new approach based on the multi-trench technique to improve the electrical performances, which are the fill factor and the electrical efficiency. The key idea behind this approach is to introduce a new multi-trench region in the intrinsic layer, in order to modulate the total resistance of the solar cell. Based on 2-D numerical investigation and optimization of amorphous SiGe double-junction (a-Si:H/a-SiGe:H) thin film solar cells, in the present paper numerical models of electrical and optical parameters are developed to explain the impact of the multi-trench technique on the improvement of the double-junction solar cell electrical behavior for high performance photovoltaic applications. In this context, electrical characteristics of the proposed design are analyzed and compared with conventional amorphous silicon double-junction thin-film solar cells.  相似文献   

12.
An analytical model of organic solar cell has been developed including the effect of monomolecular recombination and charge carrier generation rate, simultaneously. The charge carrier generation rate, depending on position and wavelength, obtained from optical transfer matrix method, has been incorporated into electrical transport equation of carriers; this has led to combining optical and electrical phenomena into this model. Charge carrier generation rate profile has been investigated and included to develop the model. The proposed model addresses the propagation of light and the effects of optical phenomena like reflection and interference inside the device. Compared to previous models, this model is an improved version because of considering recombination mechanism and position and wavelength dependent generation rate simultaneously. This analytical model is useful for finding the performance of the organic solar cell device such as current-voltage relation, power-voltage relation, efficiency, etc. avoiding the complexities of numerical calculations. The proposed model has been validated by comparing the results obtained from the model with that of published experimental works. This model may help to analyse organic solar cells and optimize their parameters for improving the performance.  相似文献   

13.
An energy balance model for concentrating photovoltaic and thermal (CPVT) systems is presented. In the model, the CPVT system and its environment are represented using a set of input parameters. The main outputs of the model are the system's electrical and thermal efficiencies. The model accounts for optical losses. Thermal losses are derived from a thermal network model of the hybrid receiver. The solar cell performance is modeled as a function of the temperature and the irradiance. The robustness of the model is demonstrated by a sensitivity analysis of all input parameters. The influence of the operating temperature on the electrical and thermal performances and the overall efficiency of the CPVT system are discussed. The limiting cases of maximum electrical and thermal power outputs are presented. Further, the influence of the concentration ratio on the electrical and thermal performance and on the partitioning of these two power outputs is analyzed in detail. It is shown that high concentration reduces the thermal losses considerably and increases the electrical efficiency. At concentration ratios above 300, the system operates with an overall efficiency of 75% at temperatures up to 160 °C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device.  相似文献   

15.
We present a universally applicable 3D‐printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun‐facing surface of the solar cell and retro‐reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin‐film nanocrystalline silicon (nc‐Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver‐coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto‐electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

16.
The effects of luminescence coupling on the external quantum efficiency (EQE) measurement of an InGaP/InGaAs/Ge triple junction solar cell were investigated. A small signal model was used to study the interaction of the subcells during EQE measurement. It was found that an optical–electrical feedback mechanism results in EQE measurement artifacts. Measurements of luminescence from the InGaP p–n junction are also performed to quantitatively determine the strength of the luminescence coupling. These results offer a more thorough and comprehensive interpretation of EQE measurement results that are needed for the design and accurate performance evaluation of high‐efficiency multijunction solar cells. The effects demonstrated here can also be used to measure the spontaneous emission efficiency of the subcells, which is useful for nondestructive assessment of multijunction solar cell material quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
太阳能电池片测试分选机用于太阳能单晶硅和多晶硅电池片的电性能测量与分选,通过模拟太阳光谱光源对电池片的相关电参数进行测量,依据测量的结果将电池片进行分档。在整个工艺流程中,测试部分是最为重要的环节,测试机构的精准度直接影响测量及分选的结果,基于此介绍太阳能电池片测试分选机测试机构的设计与测量原理。  相似文献   

18.
The main limiting factors of multijunction solar cells operating under ultra‐high concentration (>1000 suns) are examined by means of 2D physically based numerical modelling. The validation of the model is carried out by fitting calibrated light concentration measurements. Because the series resistance is the most important constraint in the electrical performance of the solar cell under ultra‐high irradiance, it is analysed and quantified detailing different contributions such as: (i) the electrical properties of the emitter; (ii) window layer of the top cell; and (iii) the band discontinuities formed at heterojunctions. We found the role of window layer to be important at very high concentrations (above 700 suns), while at ultra‐high concentrations, (above 1000 suns) a gain in efficiency (~ 1% absolute) can be obtained by a proper structural design of the window layer. In the case of the heterojunctions included in the multijunction solar cell, the impact of a high‐band offset can be mitigated by increasing the doping level density thus favouring the tunnelling effect. Moreover, the influence of different recombination mechanisms and high‐injection effects at ultra‐high irradiance is discussed. Finally, an optimisation of the complete solar cell taking into account the ohmic contacts to work under ultra‐high irradiances (from 1000 to 5000 suns) is presented as well as the implications on the use of ultra‐high irradiance in different multijunction solar cell architectures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
To further lower production costs and increase conversion efficiency of thin‐film silicon solar modules, challenges are the deposition of high‐quality microcrystalline silicon (μc‐Si:H) at an increased rate and on textured substrates that guarantee efficient light trapping. A qualitative model that explains how plasma processes act on the properties of μc‐Si:H and on the related solar cell performance is presented, evidencing the growth of two different material phases. The first phase, which gives signature for bulk defect density, can be obtained at high quality over a wide range of plasma process parameters and dominates cell performance on flat substrates. The second phase, which consists of nanoporous 2D regions, typically appears when the material is grown on substrates with inappropriate roughness, and alters or even dominates the electrical performance of the device. The formation of this second material phase is shown to be highly sensitive to deposition conditions and substrate geometry, especially at high deposition rates. This porous material phase is more prone to the incorporation of contaminants present in the plasma during film deposition and is reported to lead to solar cells with instabilities with respect to humidity exposure and post‐deposition oxidation. It is demonstrated how defective zones influence can be mitigated by the choice of suitable plasma processes and silicon sub‐oxide doped layers, for reaching high efficiency stable thin film silicon solar cells.  相似文献   

20.
A CuIn1-xGaxSe2 (CIGS) thin film solar cell model with MoSe2 transition layer was established, using SCAPS-1D software. The influence of MoSe2 interface layer formed between absorption layer CIGS and the back contact Mo on the solar cell performance was investigated.By changing the doping concentration,thickness and bandgap of MoSe2 layer, it is found that the MoSe2 and the variation of parameters have a significant effect on the electrical characteristics and photovoltaic parameters of CIGS thin film solar cells. Based on the energy band, the interfaces of Mo/MoSe2 and MoSe2/CIGS are analyzed. It is considered that Mo/MoSe2 is a Schottky contact, MoSe2/CIGS is an ohmic contact. When suitable parameters of MoSe2 layer are formed into the interface, it will provide a new path for designing CIGS solar cells with thinner absorption layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号