首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The optoelectronic properties of heterojunction thin film device with ITO/CuPc/C60/Al structure have been investigated through analyzing their current–voltage characteristics, optical absorption and photocurrent. In this organic photovoltaic device CuPc acts as an optically active layer, C60 as the electron–transporting layer and ITO and Al as electrodes. It is observed that under illumination, the excitons are formed, which subsequently drift towards the interface with C60, where an internal electric field is present. The excitons that reach to the interface are subsequently dissociated into free charge carriers due to the electric field present at the interface. The experimental results show that in this device the total current density is a function of injected carriers at electrode–organic semiconductor surface, the leakage current through the organic layer and collected photogenerated current that results from the effective dissociation of excitons.  相似文献   

2.
A novel structure of a VDMOS in reducing on-resistance is proposed.With this structure,the specific on-resistance value of the VDMOS is reduced by 22%of that of the traditional VDMOS structure as the breakdown voltage maintained the same value in theory,and there is only one additional mask in processing the new structure VDMOS,which is easily fabricated.With the TCAD tool,one 200 V N-channel VDMOS with the new structure is analyzed,and simulated results show that a specific on-resistance value will reduce by 23%,and the value by 33% will be realized when the device is fabricated in three epitaxies and four buried layers.The novel structure can be widely used in the strip-gate VDMOS area.  相似文献   

3.
In order to achieve broadband and efficient optical absorption, the multiple silver nanolayer was introduced into the photonic crystals to form a one-dimensional ternary periodic symmetric structure. The effects of thickness of each layer on the band range, absorption bandwidth, absorbance and absorption energy field distribution of the solar spectrum high absorption band were studied by the transfer matrix method. The absorption band with wavelength range from 724 nm to 1 188 nm, spectral width of 464 nm, and average absorbance of 0.78 was obtained by structural adjustment. The absorbed energy is mainly distributed in the first half of the symmetrical structure of the photonic crystal. When the thickness of the silver layer decreased from 30 nm to 15 nm, the local energy in each period increased significantly. At the same time, the distribution and transfer of energy in silicon and MgF2 layers can be controlled. The results of this paper can be used to improve the absorption of solar radiation, and provide an important basis for the design of photonic crystal and their application in solar energy utilization.  相似文献   

4.
High-optical-confinement waveguide structure based on nitride semiconductors is proposed and demonstrated for the first time with metal organic vaporphase epitaxy. The waveguide structure composed of 1-μm-thick AIN cladding layer, 2-μm-thick GaN guiding layer, and 40 periods of GaN/AIN multiple quantum wells (MQWs) was grown using optimized growth conditions for each layer. For improved material quality, the two-step growth technique using low-temperature AIN and GaN nucleation layers was utilized to reduce the stress induced by lattice mismatch between each layer. The high-optical-confinement structure could therefore be grown with high quality, leading to a successful observation of inter-sub-band absorption in GaN/AIN MQWs. The inter-sub-band absorption wavelength observed in such structure is in good agreement with that of MQWs grown on GaN layer, showing that the proposed waveguide structure can be used as a standard structure for optical devices based on inter-sub-band absorption.  相似文献   

5.
Silver nanoparticles(Ag NPs)are synthesized with chemical method,which are introduced into the traditional organic photovoltaic(OPV)structure.The experimental results show that both the optical and photoelectric properties are en-hanced because of localized surface plasmon(LSP)effects of Ag NPs.The advantage of adding Ag NPs behind active layer in incident direction is discussed.We believe this route can avoid absorption shadow and enhance the reusing of transmitted light of active layer.The average short-circuit current(J SC)of the optimum device can be raised from 9.23mA/cm2 to 10.84mA/cm2,and the energy converting efficiency(PCE)can be raised from 3.22% to 3.85%.  相似文献   

6.
The turn-on speed of electrostatic discharge (ESD) protection devices is very important for the protection of the ultrathin gate oxide. A double trigger silicon controlled rectifier device (DTSCR) can be used effectively for ESD protection because it can turn on relatively quickly. The turn-on process of the DTSCR is first studied, and a formula for calculating the turn-on time of the DTSCR is derived. It is found that the turn-on time of the DTSCR is determined mainly by the base transit time of the parasitic p-n-p and n-p-n transistors. Using the variation lateral base doping (VLBD) structure can reduce the base transit time, and a novel DTSCR device with a VLBD structure (VLBD_DTSCR) is proposed for ESD protection applications. The static-state and turn-on characteristics of the VLBD DTSCR device are simulated. The simulation results show that the VLBD structure can introduce a built-in electric field in the base region of the parasitic n-p-n and p--n-p bipolar transistors to accelerate the transport of free-carriers through the base region. In the same process and layout area, the turn-on time of the VLBD DTSCR device is at least 27% less than that of the DTSCR device with the traditional uniform base doping under the same value of the trigger current.  相似文献   

7.
In this paper, a transmissive terahertz (THz) quarter wave plate (QWP) has been proposed to realize the linear-to-circular polarization conversion in terahertz range. This quarter wave plate is composed of two dielectric layers and one metallic layer with asymmetric cross slots. In the range of 0.894—1.378 THz, the axis ratio of proposed device is less than 3 dB, and its polarization conversion efficiency is more than 45%. The distributions of surface currents and electromagnetic field density had been proposed to understand the physical mechanism of proposed device. The linear-to-circular polarization conversion can be attributed to the asymmetric transmission along slots. Finally, the simulation results are validated by experiments in terahertz region. The proposed device has simple geometry and good performance, which can be used as a key component in applications of terahertz communications, terahertz imaging and terahertz sensing.  相似文献   

8.
陈文锁  张波  李肇基  方健  关旭 《半导体学报》2010,31(6):064004-3
New Lateral IGBT with SiO2 shielded layer anode on SOI substrate is proposed and discussed. Compared to the conventional LIGBT, the proposed device offers a conductivity modulation enhanced effect due to the SiO2 shielded layer anode structure which can be formed by SIMOX technology. Simulation results show that, for the proposed LIGBT, during conducting state, the electron-hole plasma concentrations in n-drift region are several times larger than that of conventional LIGBT; the conducting current is up to 37% larger than that of conventional one. The SiO2 shielded layer anode conductivity modulation enhanced effect do not sacrifice other characteristics of device, such as breakdown and switching, but is compatible to other optimized technologies.  相似文献   

9.
The structure of organic thin film transistors (OTFTs) is optimized by introducing floating gate into the gate dielectric to reduce the threshold voltage of OTFTs in this article. Then the optimized device is simulated and the results of the simulation show the threshold voltage of optimized device is reduced by about 10 V. The reduction of the threshold voltage is helpful and useful for the application of OTFTs in many areas. In addition, this way to reduce threshold voltage of OTFT is compatible with traditional silicon technology and can be used in manufacture.  相似文献   

10.
刘从  来新泉  杜含笑  池源 《半导体学报》2016,37(6):065006-10
A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery''s service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure.  相似文献   

11.
基于InGaAs/InP吸收区、渐变区、电荷区和倍增区分离雪崩光电二极管(SAGCMAPD)器件结构,利用数值计算方法,模拟了各层参数对器件频率响应特性的影响.模拟结果表明,吸收层、倍增层厚度及电荷层面电荷密度可影响器件的-3 dB带宽;随增益的增加,器件带宽会逐渐降低;电荷层面电荷密度对器件击穿电压有明显影响.结合此模拟结果,制作出了高速InGaAs/InP雪崩光电二极管,并对器件进行了封装测试.测试结果表明,该结果与模拟结果相吻合.器件击穿电压为30 V;在倍增因子为1时,器件响应度大于0.8 A/W;在倍增因子为9时,器件暗电流小于10 nA,-3 dB带宽大于10 GHz,其性能满足10 Gbit/s光纤通信应用要求.  相似文献   

12.
应用二维漂移扩散模型研究具有分立吸收层、渐变层、电荷层和倍增层结构(SAGCM)的InGaAsP-InP雪崩光电探测器(APD),仿真分析了不同电荷层、倍增层厚度和掺杂浓度对电场分布、电流响应及击穿电压的影响,特别是参数变量对增益计算模型的影响,载流子传输过程的时间依赖关系和倍增层中所处位置的影响,仿真结果表明:较高掺杂浓度和较薄电荷层结构可以改变器件内部的电场分布,进而提高增益值.当入射光波长为1.55μm,光功率为500 W/m2时,光电流响应量级在10-2A;阈值电压降低到10V以下,击穿电压为42.6V时,器件倍增增益值大于100.  相似文献   

13.
A planar separate absorption, grading, charge, and multiplication (SAGCM) avalanche photodiode (APD) structure was designed and fabricated, allowing for an updoped multiplication layer without the use of guard rings. A very high gain-bandwidth (GBW) product of 93 GHz and DC gains exceeding 1000 have been measured for a 30-μm-diameter device. This GBW is, to the author's knowledge, the highest reported to date in any III-V APD. In principle, the useful gain-bandwidth product of SAGCM structures is not limited by the tunneling limit in the InP avalanche region of 140 GHz for conventional separate absorption, grading, and multiplication (SAGM) structures  相似文献   

14.
In this paper, a novel equivalent circuit model for the frequency performance of separate absorption grading charge multiplication (SAGCM) avalanche photodiode (APD) is developed. This model includes effects of carrier transit time, avalanche buildup time, and parasitic RC elements. Based on the equivalent circuit model, frequency and bandwidth characteristics of SAGCM APD can be simulated in advance to device fabrication, and the simulation results are in good agreement with experimental data. Conventional pin photodiodes can also be simulated as a special case when M=1. In addition, the frequency response of SAGCM APDs and pin photodiodes with different illumination directions are investigated.  相似文献   

15.
We calculated the correlation between the doping concentration of the charge layer and the multiplication layer for separate absorption, grading, charge, and multiplication InGaAs/InAlAs avalanche photodiodes (APDs). For this purpose, a predictable program was developed according to the concentration and thickness of the charge layer and the multiplication layer. We also optimized the design, fabrication, and characteristics of an APD for 20 Gbps application. The punch-through voltage and breakdown voltage of the fabricated device were 10 V and 33 V, respectively, and it was confirmed that these almost matched the designed values. The 3-dB bandwidth of the APD was 10.4 GHz, and the bit rate was approximately 20.8 Gbps.  相似文献   

16.
A simplified model for calculating gain and breakdown voltage of avalanche photodiodes (APDs) having constant ionization coefficients in their multiplication layer is presented. Good agreement is seen between the calculated results and the experimental data for published InP-InGaAs separate absorption, grading, charge, and multiplication (SAGCM) APDs. The model denotes that the gain and the breakdown voltage have a dependence on the carrier velocity ratio that is not predicted by conventional models. Hence, by comparing the calculated and measured static characteristics of the APD, one can estimate the velocity of minority carriers in the multiplication region of the device  相似文献   

17.
In this paper, we report a simple, innovative, fast, accurate, and nondestructive technique for extracting two critical device parameters-multiplication layer thickness xd and integrated areal charge density σactive in separate absorption, grading, charge, and multiplication (SAGCM) InP/InGaAs avalanche photodiodes (APDs), using punchthrough and breakdown voltages obtained from dc photocurrent measurements, We consider in detail the systematic uncertainties due both to the neglect of ionization in the absorption and charge layers, and to different ionization rates in InP reported in the literature. We also consider random errors caused by uncertainties from experiments and other device parameters, The combined error for x d is <0.05 μm, and for σactive is <3%, and these errors are smaller than errors associated with xd and σactive determined using current techniques of secondary ion mass spectroscopy (SIMS) and Hall analysis, which are destructive and/or require separate calibration wafers  相似文献   

18.
A low noise InGaAs/InP single photon avalanche diode (SPAD) is demonstrated. The device is based on planar type separate absorption, grading, charge and multiplication structure. Relying on reasonably designed device structure and low-damage Zn diffusion technology, excellent low-noise performance is achieved. Due to its importance, the physical mechanism of dark count is analyzed through performance characterization at different temperatures. The device can achieve 20% single photon detection efficiency and 320 Hz dark count rate (DCR) with a low after pulsing probability of 0.57% at 233 K.  相似文献   

19.
The two-dimensional (2-D) gain profiles for separate absorption, grading, charge and multiplication (SAGCM) InP-InGaAs avalanche photodiodes (APD's) have been modeled with a stochastic approach. To consider the influence of the curved diffusion edge on the electric field within the periphery region, equations are derived from the cylindrical Poisson's equation. The electric field profiles are computed at various APD radii and the electric field in the multiplication layer is reduced significantly for APD's with a partial charge sheet in the periphery. It is demonstrated by the modeled 2-D gain profiles that the premature edge breakdown can be effectively suppressed for such devices. The modeled 2-D gain profiles for APD's with a partial charge sheet incorporated in the periphery are in good agreement with the experimental results. The results and the uniformity issue of the 2-D gain profiles are discussed. The effect of using curved diffusion interfaces instead of a steep mesa step is also explored; this suggests that the fabrication of a charge sheet mesa step may complicate the gain uniformity issue. From our analyses, we find that the uncertainty and the symmetry of both patterning the charge sheet mesa structure and controlling the diffusion interface between the p+ InP top layer and the n- InP multiplication layer are most likely to affect the uniformity and the symmetry of the 2-D gain profiles for the SAGCM InP-InGaAs APD's  相似文献   

20.
Tarof  L.E. 《Electronics letters》1991,27(1):34-36
A planar separate absorption, grading, charge and multiplication (SAGCM) avalanche photodiode (APD) structure was fabricated, allowing for a thin undoped multiplication layer, without the use of guard rings. A gain-bandwidth (GBW) product in excess of 100 GHz has been measured for the first time.<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号