首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
蔡斌  赖涛  张永胜  杜湘瑜 《信号处理》2010,26(2):291-297
SAR-ATI和SAR-DPCA技术是分布式星载单基线SAR-GMTI系统常用的杂波抑制和运动目标检测方法。本文从运动目标检测性能出发,以两种处理技术的杂波和动目标的信号模型和统计分布模型为基础,考虑杂波和加性噪声、通道幅度/相位不一致性误差、频率同步误差等影响因素,对ATI和DPCA技术的动目标检测性能进行分析和对比。仿真实验表明在地面场景均匀同质假设下,DPCA的检测性能优于ATI技术;通道相位误差对ATI和DPCA技术影响较大;在采取了一定的同步措施前提下,频率同步误差对两种技术的检测性能影响相对较小。   相似文献   

2.
基于相位中心偏置天线(DPCA)技术的机栽SAR系统在实际运用中普遍存在着因雷达平台运动不稳定导致DPCA约束条件不满足的问题,这在很大程度上影响了机载SAR系统的杂波抑制性能。针对这个问题,该文以双天线机载SAR系统为模型,通过对DPCA的对消原理和运动误差的分析,结合插值理论,对载机匀加速运动状态下造成的运动误差提出了一种基于三次样条函数的运动补偿算法。通过计算机仿真,验证了该算法的有效性,且算法易于工程实现。  相似文献   

3.
天线相位中心偏置(DPCA,Displaced Phase Center Antenna)技术应用于双通道SAR图像域检测地面慢动目标,具有操作简单、高效实用的特点,因此寻找性能更优的DPCA检测量具有重要的理论和实际意义.本文在深入分析经典图像域DPCA检测量存在的不足的基础上,引入多视平均、共轭相乘处理,提出了几种新的DPCA检测量.理论分析和实验验证表明:新DPCA检测量具有杂波和噪声抑制能力强、旁瓣抑制好、定位精度高等特点,说明共轭相乘操作和多视平均处理能够有效地弥补经典DPCA检测量的缺陷,有效提高检测性能.此外,理论推导了随机噪声和通道之间的绝对增益误差等干扰因素对DPCA检测量的影响,证明了新DPCA检测量具有较强的抗干扰性.  相似文献   

4.
杨跃轮 《现代雷达》2015,(12):83-87
在机载合成孔径雷达(SAR)动目标检测中,由于地面慢速运动目标速度较小,因此很容易被地面强主瓣杂波淹没而检测不到。文中针对地面慢速运动目标的运动特点,提出基于分数阶傅里叶变换(Frft)的DPCA鄄CFAR 联合检测的方法,在采用天线相位中心偏置(DPCA)技术进行杂波抑制的基础上进行恒虚警(CFAR)处理,从而检测到运动目标,并且根据DPCA 对消后的信号幅度和CFAR 检测门限推导了最小可检测速度,说明了提出的算法对慢速运动目标的检测性能,并进一步采用Frft 方法估计出目标速度,最后通过仿真对算法的有效性进行了验证。  相似文献   

5.
基于信号子空间处理的DPCA运动误差校正方法   总被引:1,自引:0,他引:1  
在机载SAR/GMTI应用中,雷达平台运动误差常使得偏置相位中心天线(DPCA)失效,限制其实际应用。文中推导并仿真了运动误差引起DPCA杂波抑制性能下降的情况,提出基于信号子空间处理的解决方法,对β失效、偏航和俯仰姿态误差以及位置误差等多种情况分别进行了分析和误差校正。仿真结果表明,该方法可使DPCA对运动误差的敏感度下降,从而提高杂波抑制性能,扩大DPCA的适用范围,具有一定的工程参考价值。  相似文献   

6.
基于DPCA和多分辨分析的SAR微弱运动目标检测   总被引:1,自引:0,他引:1  
图像域偏移相位中心天线(DPCA)方法可显著抑制双孔径合成孔径雷达(SAR)的静止杂波,但对消处理后的剩余杂波和噪声仍可严重影响微弱目标检测性能。该文提出采用二维多分辨分析在DPCA处理后图像域进一步抑制干扰,显著改善了SAR微弱运动目标的检测性能。数值仿真验证了新方法对杂波和噪声二种干扰成分的抑制性能。  相似文献   

7.
在基于测量数据的机载重轨干涉SAR 运动补偿中,IMU/GPS 测量误差和地物目标定位误差会引入残余运动误差,进而对SAR 成像及干涉测量产生影响。该文针对上述两类误差,在斜视条件下建立了残余运动误差数学模型,并进一步分析了两类误差对残余运动误差的影响,在残余运动误差分析的基础上重点讨论了不同形式的IMU/GPS 测量误差对干涉SAR 图像质量、干涉相位、DEM 精度的影响。该文通过理论和仿真分析定量研究了残余运动误差对机载重轨干涉SAR 系统的性能影响,为机载重轨干涉SAR 系统设计和信号处理提供了参考依据。   相似文献   

8.
基于DPCA的机载SAR动目标检测与定位方法研究   总被引:3,自引:0,他引:3  
提出了在机载SAR模式下应用三孔径DPCA技术对地面慢速运动目标进行检测与定位的方法,从回波模型入手对此方法进行了理论分析并给出了计算机仿真结果。仿真结果表明,在满足DPCA条件的情况下,系统可以得到理想的主瓣杂波抑制效果和良好的测速定位性能。本文最后给出由于雷达平台的运动误差而导致DPCA条件不满足的情况下该方法的检测、定位性能。  相似文献   

9.
惯导测速误差随着时间逐渐积累,积累误差会导致载机运动补偿失效,从而使得DPCA检测性能下降。针对这一问题,提出采用INS/GPS组合导航系统对载机速度进行测量,能大大提高载机测速精度,有利于DPCA检测低速动目标。在建立雷达回波信号模型和INS/GPS组合导航系统模型的基础上,结合机载PD雷达背景,仿真分析了惯导系统、INS/GPS组合导航系统各自的测速精度以及不同测速精度下的DPCA检测性能。仿真结果表明:采用惯导测速时,测量精度较低,DPCA在此精度下不能检测低速动目标;采用INS/GPS组合导航测速时,测量精度较高,DPCA在此精度下能够检测出低速动目标。  相似文献   

10.
星载SAR的轨道运动和受地球自转、地球曲率等因素影响,以及卫星平台快速运动造成的地杂波谱展宽甚至占据整个方位谱,这些都使得星载SAR/GMTI的处理方法较机载SAR/GMTI更为复杂.为了有效检测运动目标,必须对地杂波进行抑制.偏置天线相位中心(DPCA)是一种有效的地杂波抑制技术.文中在星载SAR三孔径天线回波信号多普勒特性分析的基础上,结合Raney,R K给出的多普勒参数表达式,推导了一种基于DPCA的星载SAR动目标检测、径向速度分量估计以及目标定位的方法.最后,通过星载SAR/GMTI计算机仿真进行了验证.  相似文献   

11.
天线方向图不一致和天线相位中心间距误差等通道幅相误差会使传统多通道地面运动目标检测方法的杂波抑制性能下降,从而最终影响地面运动目标的检测性能.分析了空时自适应处理技术和相位中心偏置天线技术2种方法在较大通道误差情况下的性能,并介绍了一种二维自适应的通道误差校正方法.该误差校正方法是一种运算量小且性能较好的误差估计与补偿方法.通过实测数据验证了分析的正确性和方法的有效性.  相似文献   

12.
陈杰 《电子学报》2003,31(Z1):2026-2030
根据星载SAR天线的特点建立了天线展开误差模型,定义了展开不平直度指标,基于成对回波理论推导了存在展开误差条件下天线方向图函数的表达式,推出单频天线展开误差分量与方位模糊度之间统计关系,给出了天线展开误差影响方位模糊度指标的上界.大量的计算机仿真验证了本文分析方法的正确性.  相似文献   

13.
在基于相控阵天线体制的合成孔径雷达(SAR)系统中,中央电子设备和相控阵天线的非理想特性,会引入幅相误差,造成SAR信号幅相特性畸变,影响SAR图像等数据产品的质量。本文建立了相控阵体制SAR系统误差的模型,并设计了误差校正方法。研究结果表明:雷达中央电子设备的非理想特性会引入固定的幅频、相频误差;相控阵天线的非理想特性所引入的幅频、相频误差会随着波束指向的变化而变化,该误差主要根源于有源器件在不同频点处的性能差异,并会受到T/R模块移相衰减量的调制;可通过测量或分析计算对相控阵SAR的系统误差进行提取,并在SAR成像处理阶段实施误差补偿。  相似文献   

14.
针对直升机平台的特点,本文研究了直升机载战场侦察雷达杂波抑制与平台运动补偿的可能有效途径,主要包括传统的DPCA方法、-ADPCA方法、-STAP方法、随机抽取单元辅助通道-STAP方法和扩展的-STAP方法。理论分析与计算机仿真表明,扩展的-STAP方法更适合于多种非理想情况(如:阵元幅相误差、载机偏航、航速误差等)和电子战环境,具有更强的杂波与干扰抑制能力和更强的误差鲁棒性,而且,该方法既可用于相控阵雷达,又可用于连续型天线系统,是直升机载战场侦察雷达有效地实现杂波抑制与平台运动补偿的可取方案。  相似文献   

15.
天线斜置情况下三通道SAR-GMTI技术研究   总被引:4,自引:1,他引:3  
该文提出了一种新的基于DPCA(相位中心偏置天线)技术的动目标检测体制,即天线沿载机飞行方向按一定倾斜角度放置。利用等效相位中心原理建立了天线斜置情况下三通道运动目标回波信号模型,给出了天线倾斜角对动目标检测、最小可检测速度和盲速的影响。通过改进的DPCA技术实现运动目标的检测、测速和定位。最后,仿真数据验证了该新体制和改进DPCA技术对运动目标检测的可行性。  相似文献   

16.
Estimation precision of Displaced Phase Center Algorithm (DPCA) is affected by the number of displaced phase center pairs, the bandwidth of transmitting signal and many other factors. Detailed analysis is made on DPCA’s estimation precision. Analysis results show that the directional vector estimation precision of DPCA is low, which will produce accumulating errors when phase cen-ters’ track is estimated. Because of this reason, DPCA suffers from accumulating errors seriously. To overcome this problem, a method combining DPCA with Sub Aperture Image Correlation (SAIC) is presented. Large synthetic aperture is divided into sub-apertures. Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data. Bulk errors between sub-apertures are esti-mated by SAIC and compensated directly to sub-aperture images. After that, sub-aperture images are directly used to generate ultimate SAS image. The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system. Results show the method can successfully remove the accumulating error and produce a better SAS image.  相似文献   

17.
方位多通道合成孔径雷达(SAR)可有效抑制多普勒模糊以实现高分辨率宽测绘带(High-Resolution Wide-Swath, HRWS)成像。通道间的幅相误差以及位置测量误差都将影响多普勒模糊抑制性能。通过分析单星方位多通道SAR系统的通道相位误差特性,该文提出一种基于回波数据的通道相位误差时域估计方法。该方法首先利用相邻通道间的回波数据进行干涉处理,其干涉相位包含回波多普勒中心信息以及相邻通道间的相位偏差信息。然后利用循环相消方法消除通道间相位偏差的影响,提取出原始回波的多普勒中心。最后,通过对去除多普勒中心分量后的通道间干涉相位进行积分,即可得到各通道相对于参考通道的相位误差。该文方法不仅可以有效地估计通道间的相对相位偏差,还可对原始回波的多普勒中心进行有效地估计。仿真实验验证了该文算法的有效性。  相似文献   

18.
动目标检测是合成孔径雷达(SAR)领域中十分活跃的研究热点,无论在军事上还是在民用中都具有非常重要的作用.然而,目前动目标检测技术都是针对脉冲体制SAR的.随着FMCW SAR的迅速发展,FMCW SAR动目标检测技术也将成为研究热点.针对FMCW SAR的特点,文中推导了FMCW SAR的信号处理过程,研究了利用相位中心偏置天线技术实现FMCW SAR系统的动目标检测,仿真结果表明此方法切实可行.  相似文献   

19.
雷达设备收发分置带来的通道幅相一致性误差是单航过InSAR系统必须考虑的突出问题之一。该文建立了通道间幅度和相位一致性误差模型,采用面目标统计信号模型得到幅相误差存在时相干系数的计算结果,分析了通道一致性误差对InSAR干涉相位偏差和标准差的影响。最后利用地面半实物仿真试验得到实际雷达通道一致性误差引入的干涉测高误差,半实物试验结果与理论分析一致,验证了通道一致性误差影响分析的正确性。  相似文献   

20.
钟雪莲  陈仁元  杨然  吴涛 《雷达学报》2013,2(2):180-186
由于导航系统测量精度的限制,载机的位置经常存在厘米级的误差,该误差称为残余运动误差。对于机载超高分辨SAR 系统或机载重轨干涉SAR,必须估计并补偿该残余运动误差。MTPT 方法可以估计单幅SAR 图像中的残余运动误差,但是速度和斜距的误差会影响该方法的精度。该文在详细分析速度和斜距误差对MTPT 方法进行残余运动估计的影响的基础上,利用仿真和实测SAR 数据验证了这一点。同时还指出,MTPT 方法虽然可以估计速度和斜距误差,但是它们的精度敏感于相位测量误差;在利用MTPT 方法进行估计之前必须先利用其它更为准确的方法消除平台的速度误差和目标的斜距误差。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号