首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asymptotically optimal uplink transmission power control policies are derived for synchronous and asynchronous CDMA time varying fading channels with multiple user classes, random spreading sequences and MMSE multiuser detector. One optimal policy minimizes the outage probability subject to maximum average power budget and maximum transmission power constraints. Another minimizes the average power budget subject to maximum outage probability and maximum transmission power constraints. If the channel states are available, we show that both optimal policies are channel inversion threshold cut-off policies and express them explicitly. When channel states are estimated, we show how to transform the optimal policies into estimator-based policies while controlling the degradation of their performance measures . Finally, we compare between the performance of the optimal policies and other policies in an environment with Lognormal and Rayleigh fading.  相似文献   

2.
We study the Shannon capacity of adaptive transmission techniques in conjunction with diversity-combining. This capacity provides an upper bound on spectral efficiency using these techniques. We obtain closed-form solutions for the Rayleigh fading channel capacity under three adaptive policies: optimal power and rate adaptation, constant power with optimal rate adaptation, and channel inversion with fixed rate. Optimal power and rate adaptation yields a small increase in capacity over just rate adaptation, and this increase diminishes as the average received carrier-to-noise ratio (CNR) or the number of diversity branches increases. Channel inversion suffers the largest capacity penalty relative to the optimal technique, however, the penalty diminishes with increased diversity. Although diversity yields large capacity gains for all the techniques, the gain is most pronounced with channel inversion. For example, the capacity using channel inversion with two-branch diversity exceeds that of a single-branch system using optimal rate and power adaptation. Since channel inversion is the least complex scheme to implement, there is a tradeoff between complexity and capacity for the various adaptation methods and diversity-combining techniques  相似文献   

3.
Joint optimization of signal-to-noise ratio (SNR) target and transmission rate adaptation is examined for multilevel quadrature amplitude modulation (MQAM) over flat-fading channels, to maximize the spectral efficiency subject to an average transmit power constraint. We propose an adaptive transmission scheme in which the outer-loop SNR target and data rate are adapted to bit-error rate (BER), where total or truncated channel-inversion strategies are exploited for the (fast) inner-loop power control. We obtain the optimal solutions for both continuous and discrete rate adaptation, and consider cases where diversity combining is performed in the receiver. We show that by using this BER-based adaptive scheme, spectral efficiency can be improved compared with optimal SNR-based variable-rate variable-power MQAM. We also show that for continuous rate adaptation, the optimal SNR target monotonically increases with BER, while it descends within a BER range with constant rate  相似文献   

4.
We consider cross-layer adaptive transmission for a single-user system with stochastic data traffic and a time- varying wireless channel. The objective is to vary the transmit power and rate according to the buffer and channel conditions so that the system throughput, defined as the long-term average rate of successful data transmission, is maximized, subject to an average transmit power constraint. When adaptation is subject to a fixed bit error rate (BER) requirement, maximizing the system throughput is equivalent to minimizing packet loss due to buffer overflow. When the BER requirement is relaxed, maximizing the system throughput is equivalent to minimizing total packet loss due to buffer overflow and transmission errors. In both cases, we obtain optimal transmission policies through dynamic programming. We identify an interesting structural property of these optimal policies, i.e., for certain correlated fading channel models, the optimal transmit power and rate can increase when the channel gain decreases toward outage. This is in sharp contrast to the water-filling structure of policies that maximize the rate of transmission over fading channels. Numerical results are provided to support the theoretical development.  相似文献   

5.
Degrees of freedom in adaptive modulation: a unified view   总被引:2,自引:0,他引:2  
We examine adaptive modulation schemes for flat-fading channels where the data rate, transmit power, and instantaneous BER are varied to maximize spectral efficiency, subject to an average power and BER constraint. Both continuous-rate and discrete-rate adaptation are considered, as well as average and instantaneous BER constraints. We find the general form of power, BER and data rate adaptation that maximizes spectral efficiency for a large class of modulation techniques and fading distributions. The optimal adaptation of these parameters is to increase the power and data rate and decrease the BER as the channel quality improves. Surprisingly, little spectral efficiency is lost when the power or rate is constrained to be constant. Hence, the spectral efficiency of adaptive modulation is relatively insensitive to which degrees of freedom are adapted  相似文献   

6.
In this paper, power adaptation for direct-sequence code-division multiple-access communications that employs a successive interference cancellation (SIC) receiver is considered. The transmission power is adapted so that, with the channel variations, the received power levels of each user have appropriate disparities. Under the constraint of average transmission power, we consider two strategies in adjusting the disparity between received signal powers. With the first strategy, the average bit-error rate (BER) for a given user averaged over channel fading statistics is minimized, while with the other, the instantaneous BER is equal for all users. We find that the performance difference between the two strategies becomes negligible as the average transmission power or line-of-sight component increases. We also discuss the impact of appropriate disparity in received power levels on the BER performance of SIC receivers.  相似文献   

7.
The impact of inaccurate channel state information at the transmitter for a variable rate variable power multilevel quadrature amplitude modulation (VRVP-MQAM) system over a Rayleigh flat-fading channel is investigated. A system model is proposed with rate and power adaptation based on the estimates of instantaneous signal-to-noise ratio (SNR) and bit error rate (BER). A pilot symbol assisted modulation scheme is used for SNR estimation. The BER estimator is derived using a maximum a posteriori approach and a simplified closed-form solution is obtained as a function of only the second order statistical characterization of the channel state imperfection. Based on the proposed system model, rate and power adaptation is derived for the optimization of spectral efficiency subject to an average power constraint and an instantaneous BER requirement. The performance of the VRVP-MQAM system under imperfect channel state information (CSI) is evaluated. We show that the proposed VRVP-MQAM system that employs optimal solutions based on the statistical characterization of CSI imperfection achieves a higher spectral efficiency as compared to an ideal CSI assumption based method.  相似文献   

8.
We derive closed-form expressions for the single-user capacity of maximal ratio combining diversity systems taking into account the effect of correlation between the different branches. We consider a Rayleigh fading channel with two kinds of correlation: 1) equal branch signal-to-noise ratios (SNRs) and the same correlation between any pair of branches and 2) unequal branch SNRs and arbitrary correlation between branches such that the eigenvalues of the branch covariance matrix are all distinct. Three adaptive transmission schemes are analyzed: 1) optimal simultaneous power and rate adaptation; 2) optimal rate adaptation with constant transmit power; and 3) channel inversion with fixed rate.  相似文献   

9.
Practically, the maximum transmission power of transmission systems is limited. This power constraint causes the variable power control derived from no maximum power limitation suffering from performance degradation. In this paper, a constrained variable‐power adaptive M‐ary quadrature amplitude modulation scheme for MIMO systems with space–time coding is developed. Convex optimization is used to derive the switching thresholds of the instantaneous signal‐to‐noise ratio for power control (PC) and adaptive modulation under the constraints of maximum power, average power, and target BER. In the derivation of the relation between modulation and power, the exact BER expression of binary phase shift keying modulation and a tight bound for higher order quadrature amplitude modulation are used to make the PC scheme fulfill the target BER even at low signal‐to‐noise ratio where the previous PC schemes fail to meet the target BER. Numerical results show that the derived control scheme under the power constraints can obtain the spectrum efficiency and BER performance close to the previous control scheme without power limitation. Moreover, it can satisfy the requirements of power limitation and target BER and can effectively avoid the excessive power consumption of previous PC scheme in poor channel condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Adaptive Modulation over Nakagami Fading Channels   总被引:29,自引:4,他引:25  
We first study the capacity of Nakagami multipath fading (NMF) channels with an average power constraint for three power and rate adaptation policies. We obtain closed-form solutions for NMF channel capacity for each power and rate adaptation strategy. Results show that rate adaptation is the key to increasing link spectral efficiency. We then analyze the performance of practical constant-power variable-rate M-QAM schemes over NMF channels. We obtain closed-form expressions for the outage probability, spectral efficiency and average bit-error-rate (BER) assuming perfect channel estimation and negligible time delay between channel estimation and signal set adaptation. We also analyze the impact of time delay on the BER of adaptive M-QAM.  相似文献   

11.
The spectral efficiency results for different adaptive transmission schemes over correlated diversity branches with unequal average signal to noise ratio (SNR) obtained so far in literature are not applicable for Nakagami-0.5 fading channels. In this paper, we investigate the effect of fade correlation and level of imbalance in the branch average received SNR on the spectral efficiency of Nakagami-0.5 fading channels in conjunction with dual-branch selection combining (SC). This paper derived the expressions for the spectral efficiency over correlated Nakagami-0.5 fading channels with unequal average received SNR. This spectral efficiency is evaluated under different adaptive transmission schemes using dual-branch SC diversity scheme. The corresponding expressions for Nakagami-0.5 fading are considered to be the expressions under worst fading conditions. Finally, numerical results are provided to illustrate the spectral efficiency degradation due to channel correlation and unequal average received SNR between the different combined branches under different adaptive transmission schemes. It has been observed that optimal simultaneous power and rate adaptation (OPRA) scheme provides improved spectral efficiency as compared to truncated channel inversion with fixed rate (TIFR) and optimal rate adaptation with constant transmit power (ORA) schemes under worst case fading scenario. It is very interesting to observe that TIFR scheme is always a better choice over ORA scheme under correlated Nakagami-0.5 fading channels with unequal average received SNR.  相似文献   

12.
In this letter, the use of adaptive source transmission with amplify-and-forward relaying is proposed. Three different adaptive techniques are considered: (i) optimal simultaneous power and rate adaptation; (ii) constant power with optimal rate adaptation; (iii) channel inversion with fixed rate. The capacity upper bounds of these adaptive protocols are derived for the amplify-and-forward cooperative system over both independent and identically distributed (i.i.d.) Rayleigh fading and non-i.i.d. Rayleigh fading environments. The capacity analysis is based on an upper bound on the effective received signal-to-noise ratio (SNR). The tightness of the upper bound is validated by the use of a lower bound and by Monte Carlo simulation. It is shown that at high SNR the optimal simultaneous power and rate adaptation and the optimal rate adaptation with constant power provide roughly the same capacity. Channel inversion is shown to suffer from a deterioration in capacity relative to the other adaptive techniques.  相似文献   

13.
We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions, most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades, the modulation gradually reduces its data throughput and reallocates most of its available power to ensure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit error rate (BER) for both voice and data transmission over Nakagami-m fading channels. We also discuss the features and advantages of the proposed scheme. For example, in Rayleigh fading with an average signal-to-noise ratio (SNR) of 20 dB, our scheme is able to transmit about 2 bits/s/Hz of data at an average BER of 10 -5 while sending about 1 bit/s/Hz of voice at an average BER of 10-2  相似文献   

14.
In this paper, closed-form expressions for capacities per unit bandwidth for fading channels with impairments due to Branch Correlation are derived for optimal power and rate adaptation, constant transmit power, channel inversion with fixed rate, and truncated channel inversion policies for maximal ratio combining diversity reception case. Closed-form expressions for system spectrum efficiency when employing different adaptation policies are derived. Analytical results show accurately that optimal power and rate adaptation policy provides the highest capacity over other adaptation policies. In the case of errors due to branch correlation, optimal power and rate adaptation policy provides the best results. All adaptation policies suffer no improvement in channel capacity as the branch correlation is increased. This fact is verified using various plots for different policies. With increase in branch correlation, capacity gains are significantly larger for optimal power and rate adaptation policy as compared to the other policies. The outage probability for branch correlation is also derived and analyzed using plots for the same.  相似文献   

15.
To approach the potential multiple-input multiple-output (MIMO) capacity while optimizing the system bit-error rate (BER) performance, the joint transmit and receive minimum mean squared error (joint Tx/Rx MMSE) design has been proposed. It is the optimal linear scheme for spatial multiplexing MIMO systems, assuming a fixed number of spatial streams p as well as fixed modulation and coding across these spatial streams. However, the number of spatial streams has been arbitrarily chosen and fixed, which may lead to an inefficient power allocation strategy and a poor BER performance. In this paper, we relax the constraint of fixed number of streams p and optimize this value for the current channel realization, under the constraints of fixed average total transmit power P/sub T/ and fixed rate R, what we refer to as mode selection . Based on the observation of the existence of a dominant optimal number of streams value for the considered Rayleigh flat-fading MIMO channel model, we further propose an "average" mode selection that avoids the per-channel adaptation through using the latter dominant value for all channel realizations. Finally, we exhibit the significant BER improvement provided by our mode selection over the conventional joint Tx/Rx MMSE design. Such significant improvement is due to the better exploitation of the MIMO spatial diversity and the more efficient power allocation enabled by our mode selection.  相似文献   

16.
In this work, closed-form expressions for capacities per unit bandwidth for MIMO-OFDM systems employing Orthogonal Space-Frequency Block Coding over multipath frequency-selective fading channels are derived for adaptation policies like optimal power and rate adaptation, optimal rate adaptation with constant transmit power, channel inversion with fixed rate, and truncated channel inversion polices. A Signal-to-Noise Ratio based user selection scheme is considered. Optimal power and rate adaptation policy provides the highest capacity over other adaptation policies. Capacity penalty is the highest for optimal rate adaptation with constant transmit power policy, while the performance of channel inversion with fixed rate policy and truncated channel inversion policy lie between that of OPRA and ORA policies.  相似文献   

17.
The performance of the orthogonal frequency-division-multiplexing (OFDM) system over the strictly peak power and band-limited channel is analyzed in terms of the required input back-off, bit-error rate (BER), and channel capacity on the assumption that the power amplifier is perfectly linearized. The peak-power limitation is implemented by linearly scaling the band-limited OFDM signal such that the maximum peak power of each OFDM symbol is always below the saturation level of the amplifier. The theoretical performance analysis requires the knowledge of the distribution of the peak power normalized by the symbol-wise (local) average power, referred to as symbol-wise peak-to-average power ratio (PAR) in the paper, and we also develop a method to numerically calculate its statistical distribution. The analysis of BER performance suggests that the linear scaling causes practically negligible degradation. Furthermore, the benefit of additional application of simple PAR reduction schemes, such as symbol selection and deliberate clipping and filtering, is also examined.  相似文献   

18.
The design of signals for binary communication systems employing feedback has previously been considered by Turin. A delayless, infinite-bandwidth forward channel disturbed by additive, white, Gaussian noise is assumed. At each instant of time, the log likelihood ratio of the two possible signals is fed back to the transmitter via a noiseless and delayless feedback channel. The forward-channel signals are said to be optimally designed when the feedback information is so utilized that the average (for sequential detection) or fixed (for nonsequential detection) transmission time is minimized, subject to a specified probability of error. Average and peak power constraints are also placed on the signals. Turin has solved the signal design problem for extreme values (i.e., very large or equal to one) of the peak-to-average power constraint ratio. These results are extended in this paper to arbitrary values of the power constraint ratio, for both sequential and nonsequential detection.  相似文献   

19.
A performance improvement scheme for a multicode DS-CDMA system is proposed, which uses the redundant code channel to reduce the peak-to-average power ratio. Significant BER improvement is achieved by error detection and correction, based on the Euclidean distance property of received signals.  相似文献   

20.
This paper presents two new methods for evaluating the ergodic channel capacities of cooperative non‐regenerative multirelay networks in a myriad of fading environments and under three distinct source‐adaptive transmission policies: (i) optimal rate adaptation with a fixed transmit power; (ii) optimal joint power‐and‐rate adaptation; and (iii) truncated channel inversion with fixed rate. In contrast to the previous related works, our proposed unified analytical frameworks that are based on the moment generating function and/or the cumulative distribution function of end‐to‐end signal‐to‐noise ratio allow us to gain insights into how power assignment during different transmission phases, relay node placement, fade distributions, and dissimilar fading statistics across the distinct communication links impact the ergodic capacity, without imposing any restrictions on the channel fading parameters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号