首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究轨道交通槽形梁结构振动与噪声的特性,基于车辆-轨道耦合动力学模型,利用有限元和边界元法分析槽形梁结构的声振特性,得到槽形梁底板的垂向振动加速度振级和腹板的横向振动加速度振级的峰值频率均为63 Hz;槽形梁结构噪声的线性声压级的峰值频率在31.5~80 Hz之间,且离桥梁的距离越远,场点的最大线性声压级越小。研究结果表明:采用固支边界条件的槽形梁结构自振频率较大,且具有显著的减振降噪效果,结果可为轨道交通槽形梁的结构声学优化提供理论参考。  相似文献   

2.
为探讨城市轨道交通槽形梁低频噪声综合面板声学贡献量,以某拟建30 m轨道交通槽形梁为研究对象,开展结构声辐射特性研究。基于有限元/边界元法分别建立槽形梁有限元模型、声学边界元模型,采用间接边界元法分析槽形梁的声辐射特性。在此基础上,应用声传递向量法对槽形梁的结构噪声进行面板声学分析,引入特征频率计权系数以及场点权重系数确定多特征频率下对综合声场声学贡献量最大的关键槽形梁面板。研究结果表明:轨道交通槽形梁的结构噪声以20~80 Hz的低频为主,各场点在31.5 Hz和63 Hz处出现噪声峰值;槽形梁综合声场声压主要由底板贡献,翼缘板对综合声场声压贡献较小,腹板对综合远声场有负影响;应当有针对性地对关键面板进行结构优化改善结构噪声性能。  相似文献   

3.
为研究不同跨径的轨道交通槽形梁结构振动与噪声的特性,基于车辆-轨道耦合动力学模型,利用有限元和边界元法分析跨径对槽形梁结构声振特性的影响。研究结果表明:随着桥梁跨径的增大,槽形梁的横向和竖向自振频率都会减小;不同跨径的槽形梁结构振动与噪声的峰值频率都在63 Hz附近;最后分析得出跨度为27 m的轨道交通槽形梁的声学性能最好,这为轨道交通槽形梁的减振降噪设计提供一定的理论参考。  相似文献   

4.
为了精准预测列车通过轨道交通高架槽形梁桥时诱发的结构噪声,分析梁底板厚度对声辐射的影响,结合有限元-瞬时边界元法,采用多体动力学软件SIMPACK和有限元软件ANSYS协同联合仿真分析法,建立了车桥耦合系统振动分析模型以及槽形梁结构声辐射有限元/边界元模型。分析了列车荷载作用下槽形梁桥的声辐射特性,探讨了底板厚度对槽形梁结构噪声的影响。研究表明:地铁列车以80km/h的时速通过槽形梁桥时,桥面板的振动及桥梁结构噪声主要集中在底板附近;随着底板厚度的增加,槽形梁桥结构辐射噪声近声场处降低较为显著,对结构远声场有一定程度的影响。分析结果可为轨道交通槽形梁结构减振降噪提供一定的参考。  相似文献   

5.
运用车桥耦合动力理论并结合基于间接边界元法的噪声分析方法,对高速铁路32m简支槽形梁桥结构噪声的声辐射特性进行研究。结果表明:简支槽形梁的抗扭刚度小,抗扭性能弱;6.3 Hz以下频率的振动噪声主要由梁体的整体振动产生,6.3Hz以上频率的振动噪声主要由梁体构件的局部振动产生,振动噪声受构件的局部振动影响显著,声压级峰值频率为25 Hz;横桥向,随着距桥梁中线距离的增大,场点声压级逐渐变小,距离每增大5m声压级平均降低1.2~2.5dB;梁下区域距桥梁中线15m范围内,行车侧声场声压级大于非行车侧,10m处行车侧场点声压级平均大1.87dB,距桥梁中线25m范围以外,行车侧声场声压级小于非行车侧,30m处行车侧场点声压级平均小1.46dB;底板的声压贡献系数要比腹板和翼板大的多,远场声压主要受底板的影响;地面附近的噪声基本由底板产生;应当有针对性的采取措施改善结构的振动噪声性能。  相似文献   

6.
针对轨道交通槽形梁局部振动的问题,基于有限元理论,建立轨道交通槽形梁有限元模型。对其进行模态分析,再基于车辆-轨道耦合动力学理论,计算槽形梁在列车荷载作用下的局部振动响应,通过对选取的5个输出点的加速度频谱曲线进行分析。研究结果表明:槽形梁翼缘板的横向振动响应最大,最大的加速度振级为107.2 d B。槽形梁底板的垂向振动加速度在50 Hz处有峰值,左右两边的翼缘板和腹板的横向振动响应频谱曲线相类似,都在12.5 Hz和40 Hz处有峰值。通过槽形梁结构参数对槽形梁局部振动响应的敏感性分析,表明加厚底板厚度能够很好地降低槽形梁的振动响应。但并非越厚越好,其最佳值还有待进一步分析。  相似文献   

7.
为了探讨结构参数对桥梁结构噪声的影响,以某拟建轨道交通槽形梁为研究对象,选取桥梁支座刚度、桥梁阻尼比、桥梁结构刚度3个影响因素,结合有限元-瞬态边界元理论,对其进行正交分析。研究结果表明:轨道交通槽形梁结构瞬态辐射噪声对桥梁结构阻尼和结构刚度的改变较为敏感,随着桥梁结构阻尼参数和结构刚度系数的增大,声场最大线性声压级逐渐减小;在结构辐射噪声近声场处,桥梁结构刚度对槽形梁结构噪声影响较为显著;在结构辐射噪声远声场处,桥梁阻尼比对槽形梁结构噪声影响较为显著;应当有针对性地对桥梁结构噪声影响参数进行优化,从而改善桥梁结构噪声性能。  相似文献   

8.
铁路32 m混凝土简支箱梁结构噪声试验研究   总被引:1,自引:0,他引:1  
以32 m单线和双线单室混凝土简支箱梁为对象,通过噪声试验、结构有限元和声学有限元分析,研究箱梁结构噪声的声辐射特性、峰值频率产生的原因及评价方法.结果表明:列车通过桥梁时,离箱梁表面较远处的噪声级起伏不大,可采用稳态算法简化分析;混凝土箱梁的结构噪声主要分布在250 Hz以下,且随频率的增加而迅速衰减,因此理论预测时可将250 Hz作为截止频率;单线和双线箱梁的2个噪声峰值频率分别为63和160 Hz,以及50和315 Hz,二者均在第1个峰值频率处达到最大声压级,且此峰值频率处的噪声具有明显的有调性;不同箱室尺寸箱梁的结构噪声声辐射差异较大,车速并不是噪声的第一决定因素;混凝土箱梁结构噪声的峰值频率出现在声辐射效率和振动响应均较大处,因此应避免结构振动模态和空腔声学模态重合而导致空腔共鸣引起的噪声被放大;建议修订铁路噪声相关规范时,考虑混凝土箱梁低频结构噪声的危害.  相似文献   

9.
以轨道交通32 m双线混凝土简支箱梁为研究对象,采用现场实测及有限元、声学边界元联合仿真的方法,分析列车运行条件下桥梁低频结构辐射噪声的声场分布,在此基础上,考虑在桥梁附近设立不同高度的地面隔声墙,分析隔声墙高度对桥梁结构噪声的影响。研究结果表明:桥梁振动辐射的噪声主要集中在底板附近,以小于250 Hz的低频噪声为主,全局峰值出现在50~63 Hz频率段;在一些较为复杂的现场工况,例如居民楼距高架桥的距离较近,在居民楼和桥梁之间设立的隔声墙,可以在一定程度上降低桥梁结构噪声对居民生活的影响;位于桥梁附近的隔声墙对于墙后的场点有一定的降噪效果,降噪效果与隔声墙高度呈非线性关系,在考虑经济效益和美观的情况下,可以设立2.3 m左右的隔声墙。  相似文献   

10.
高速铁路桥梁结构噪声的全频段预测研究(Ⅱ):试验验证   总被引:1,自引:0,他引:1  
前1篇系列文章(《铁道学报》2013年第1期,作者:李小珍,等)基于车-线-桥空间耦合振动和稳态声辐射的边界元法、统计能量法理论,提出高速铁路桥梁结构噪声的全频段预测方法。本文以32m双线混凝土简支箱梁为例,将数值仿真分析与现场试验结果进行对比,验证理论模型的可靠性。分析结果表明:该箱梁的结构噪声主要出现在200Hz以下,沿垂直于线路方向的传播较远;噪声峰值出现在中心频率50Hz的频带,且在某些速度下具有明显的有调性;梁缝处的共鸣声较大,出现在中心频率315Hz的频带,沿垂直于线路方向的衰减较快。进行降噪处理时,可优先从噪声峰值频率入手,降低峰值频率处的结构噪声将更为有效。  相似文献   

11.
高架结构在轨道交通中的比例愈来愈大,城轨桥梁振动引起的噪声辐射问题也引起越来越多的关注。利用边界元方法对槽型梁、箱型梁及T型梁3种不同截面形式的城轨桥梁的振动噪声辐射进行分析,研究结果表明:在列车荷载作用下槽型梁的位移响应最大,其次为箱型梁,T型梁的位移响应最小;城轨桥梁下部场点的声压级普遍大于上部场点的声压级;距离轨道中心线0~10 m范围内,槽型梁的场点声压级最大,其次为T型梁,箱型梁的场点声压级最小;10~40 m范围内T型梁的场点声压级最大,其次为箱型梁,槽型梁的场点声压级最小;列车的运行参数对结构的振动响应和振动噪声辐射有显著影响。  相似文献   

12.
为了解高速铁路钢桥结构噪声辐射特性,基于车-线-桥空间耦合振动理论和统计能量分析原理,提出高速铁路钢桥结构噪声预测模型,对其辐射噪声空间分布规律和结构各部分声贡献量进行分析。该预测模型采用空间板梁混合有限元模型进行车-线-桥空间耦合振动分析,得到桥面板的振动速度时程,经FFT变换后得到频域内的结果,作为后续统计能量模型的输入。通过求解统计能量平衡方程,得到系统振动能量分布和传递结果,根据振动声辐射理论,求得桥梁结构噪声。对64m钢桁结合梁的分析结果表明:钢桥结构噪声波阵面为略显纺锤形的柱面波;纵、横梁和主桁为主要声源;纵、横梁和主桁的噪声峰值频段分别为1 000 Hz和630 Hz;随着至线路中心线的距离增加,近主桁辐射结构噪声衰减最快;近场噪声衰减速度比远场快。  相似文献   

13.
研究目的:针对日益严重的桥梁结构低频噪声问题,本文建立钢轨、无砟轨道、桥梁结构的梁-板振动有限元预测模型,分析城市轨道交通单线U型梁在垂向轮轨力作用下20~200 Hz范围内频域的振动及其近场、远场的结构噪声特性,同时分析U型梁各板件的声贡献量。通过对U型梁进行振动噪声分析,提出截面优化建议。研究结论:(1)U型梁的振动幅值峰值出现在31.5~63 Hz左右,翼板的振动幅值最大,其次是底板和腹板;(2)由钢轨到U型梁的振动功率级损失在16.9~20 dB左右,U型梁各板件的振动功率级与其声压贡献量的规律基本一致,底板腹板翼板;(3)在近场点各板件的声压级峰值都在50 Hz,底板的声压级最大,其次是腹板和翼板;(4)远场噪声主要受底板的作用影响,其声压贡献量达到81%左右,因此应作为主要降噪对象,而翼板的振动峰值虽大,但对声场的影响很小,几乎可以忽略不计;(5)该研究成果可为城市轨道交通的桥梁采取减振降噪措施提供借鉴。  相似文献   

14.
基于车-线-桥耦合振动和瞬态声辐射理论,提出一种混凝土箱梁低频结构噪声的数值预测方法 ,以分析结构噪声的时变特性。采用板/壳单元模拟箱梁,求解车-线-桥耦合振动系统,得到时域内箱梁局部振动响应。将该响应作为声辐射模型的边界条件,采用瞬态边界元法求解结构噪声场。以32m混凝土简支箱梁为例,将计算结果与实测数据进行对比验证。结果表明:计算值与实测值在时域和频域内均吻合良好;振动与噪声的1/3倍频程显著频带分别为31.5~63Hz和40~80Hz;振动响应大小由作用在箱梁上的轮对数决定,不同时刻振动响应的频谱特性变化较小;邻跨声辐射的影响不可忽略,简化分析中可取两跨计算。  相似文献   

15.
提出预测轨道交通桥梁和钢轨中低频噪声的精细化模型:首先,建立3D桥梁和钢轨有限元模型;然后,结合3D车辆-轨道-桥梁耦合振动模型和2.5D声学无限元模型计算列车通过时的桥梁噪声和钢轨噪声。以上海轨道交通某混凝土U梁为研究对象,对桥梁辐射噪声和钢轨辐射噪声的频谱特性和空间分布规律进行了研究,并通过实测对比验证数值计算方法的精度。研究表明:桥梁结构噪声主要在U梁下方的空间起主导作用,而钢轨噪声在U梁上方的贡献更大;在距离轨道交通中心线20m处,两者的声压值基本相当,在噪声预测时桥梁噪声与钢轨噪声的贡献均需考虑。  相似文献   

16.
基于车-线-桥耦合振动和统计能量分析,提出铁路钢-混结合梁桥车致振动与结构噪声的理论计算方法。车-线-桥耦合振动分析中,采用有限元方法建立梁-板混合模型,计算桥面板的振动能量,代入并求解统计能量平衡方程,得到桥梁各子系统间的振动能量传递,根据桥梁各构件的振动响应计算桥梁辐射的结构噪声。通过对某三跨钢-混结合梁桥辐射噪声进行现场实测,验证了理论预测模型。分析结果表明:结合梁桥结构噪声主要位于20~1 000Hz频段,计算此类桥梁结构噪声时截止频率可以取1 000Hz;计算主跨跨中断面距近轨不超过25m场点的结构噪声时,可忽略邻跨的影响;全频段内下翼缘辐射噪声最小,315 Hz以上频段以腹板辐射噪声为主,315Hz以下频段以桥面板和钢梁腹板辐射噪声为主。  相似文献   

17.
针对轨道交通高架桥结构振动噪声问题,将有限元振动分析理论与声辐射分析边界元法相结合,分析双箱单室箱型梁低频噪声辐射特性。通过改变腹板与轨道的相对位置,对比分析双箱单室箱型梁结构改进后的减振降噪效应。计算结果表明:双箱单室箱型梁改变腹板与轨道相对位置后,底板和腹板减振效果明显;场点的峰值声压也出现不同程度的降低,说明将腹板置于轨下的改进措施对双箱单室箱型梁减振降噪是有效的。  相似文献   

18.
城市轨道交通高架线路的声振问题已成为限制其发展的关键因素之一.桥型和材质决定了混凝土槽形梁会对桥上轨道结构的声辐射产生很大的影响.本文利用多体系统动力学软件UM建立地铁车辆-橡胶浮置板-槽形梁耦合动力学模型,求解该系统的动力学特性;以橡胶浮置板的动力学频域响应作为声学边界条件,采用有限元-边界元方法分析了该减振轨道的声辐射特性;在此基础上对比分析橡胶浮置板减振轨道在自由声场与考虑槽形梁腹板遮蔽效应时的声辐射特性,研究槽形梁对桥上轨道结构声辐射传播的影响.研究结果表明:槽形梁遮蔽效应对桥上轨道结构的线性声压级和总声压级等声辐射特性有很大影响;槽形梁能够明显减弱桥上轨道结构在桥下部分范围内的声辐射传播.  相似文献   

19.
高速列车作用下箱梁桥箱内振动噪声分布研究   总被引:2,自引:2,他引:0  
为解决高速铁路线上箱梁桥日常检查与列车运营之间的冲突,探讨列车正常运行时箱梁内部噪声对日常检查工作造成的影响,桥梁结构振动辐射低频噪声会对检测人员造成极大危害,研究箱梁内部噪声分布有着重要的现实意义。结合车桥耦合振动和声传播理论,通过建立桥梁振动辐射有限元-边界元的求解体系,以78 m变截面混凝土箱梁桥作为实体模型,得出箱内瞬态噪声声场特性。分析结果表明,在车桥耦合振动所产生的箱内声辐射噪声分析中,变截面处声压值增大,且列车交汇产生的声压值大于单向行车产生的声压值。当箱内添加吸声材料后,可降低噪声水平,保障检测人员身体健康。  相似文献   

20.
为探讨轨道交通桥梁结构噪声分布规律及评价采取轨道减振措施后的降噪效果,以某轨道交通高架线路为例,采用有限元与边界元相结合的方法分析有无隔振措施时桥梁振动及其引起的结构噪声,其中主要分析钢弹簧浮置板轨道、减振扣件轨道和橡胶减振垫轨道3种轨道减振措施。结果表明:单箱单室箱梁辐射声能量主要集中于31.5~125 Hz,噪声峰值出现在40~63 Hz;列车运行速度越大,桥梁结构噪声辐射总声压级越大;采取隔振措施后结构噪声可降低约5.6~16.6 dB(A),其中钢弹簧浮置板轨道降噪效果明显优于橡胶减振垫轨道和减振扣件轨道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号