首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为研究碰撞效应对重载铁路大跨连续刚构桥与轨道系统地震响应的影响,建立考虑碰撞的重载大跨连续刚构桥与轨道系统一体化仿真模型。以某4-32 m简支梁+(108+180+108)m连续刚构桥+4-32 m简支梁为例,研究碰撞效应对系统受力特性的影响,并探讨地震强度、碰撞单元刚度、梁端间距和小阻力扣件布置方案对碰撞效应和系统受力特性的影响。研究结果表明:钢轨地震应力最大值发生在简支梁与刚构桥交接处,刚构桥桥墩承受较大的墩顶水平力,考虑碰撞时的墩顶水平力最大值较忽略碰撞减少34.2%;增大地震强度,可显著增强碰撞效应,同时也使钢轨应力和墩顶水平力增大;增大碰撞单元刚度使梁体间的碰撞力增大,同时钢轨应力也有小幅度的减小;增大梁端间距使碰撞次数减小,但钢轨应力和墩顶水平力最大值均增大;布置小阻力扣件会减弱桥与轨道的非线性约束,碰撞效应加强,布置小阻力扣件路段的钢轨应力迅速减小,全线布置小阻力扣件较全线有砟轨道钢轨应力最大值减少了42.0%。  相似文献   

2.
拱桥在我国高速铁路中应用日益广泛,而不同形式大跨度拱桥上无缝线路纵向力分布规律仍有待探明。以112 m提篮拱桥、140 m钢箱系杆拱桥、(24+160+24)m系杆拱桥及(52+382+52)m钢箱拱桥4种不同形式拱桥为例,建立考虑轨道、梁体、吊杆和拱肋的拱桥-轨道系统精细化仿真模型,深入分析钢轨伸缩调节器对纵向力的影响,揭示复杂温度、竖向活载、列车制动及地震作用下大跨度拱桥与轨道相互作用规律,探讨加载历史对拱桥-轨道系统受力特性的影响。研究结果表明,在温度荷载、竖向活载、列车制动和纵向地震作用下,钢轨应力极值均出现在梁端附近,在梁端设置钢轨伸缩调节器能有效降低钢轨应力;与挠曲力、制动力相比,梁体温度变化引起的伸缩力为主要控制性荷载,吊杆和拱肋的温度变化对拱桥上钢轨纵向力影响较小;地震作用下梁端附近钢轨应力极值达到635.5 MPa;检算墩顶水平力时,应采用考虑加载历史影响的分析方法,计算结果更安全。  相似文献   

3.
为研究城市轨道交通简支梁桥墩顶纵向刚度限值,建立20孔跨度均为30 m简支梁桥无缝线路计算模型,以钢轨强度、梁轨(板)相对位移和钢轨断缝值为控制指标,分析了墩顶纵向刚度对桥上无缝线路受力特性的影响。研究表明:随着墩顶纵向刚度增大,钢轨伸缩附加力增大,钢轨制动附加力和梁轨(板)相对位移降低;对于简支梁桥,控制墩顶纵向刚度的决定性指标是梁轨(板)相对位移;考虑一定的安全余量,建议30 m简支梁桥墩顶纵向刚度限值为双线240 kN/cm。为降低工程造价,可基于梁轨相互作用原理确定桥墩纵向刚度限值。  相似文献   

4.
基于有限单元法和梁轨相互作用理论,以铁路常见桥型连续梁桥和简支梁桥为例,建立了线-桥-墩一体化桥上无缝线路计算模型,分析了伸缩力的作用规律及桥梁跨数、支座、墩台纵向水平刚度、桥梁跨度对伸缩力的影响。结果表明:宜增大连续梁相邻简支梁桥墩的纵向水平刚度,以提高其承载能力;对于多达数十跨、数百跨的简支梁,可只取10跨计算;对于多联连续梁桥,可只取相邻5跨简支梁进行计算;我国桥上无缝线路计算中一般未考虑活动支座摩擦系数的影响及将支座视为刚性体,都是偏于安全的;桥梁墩台纵向水平刚度不宜过大。  相似文献   

5.
结合几内亚Simandou重载铁路项目,建立有砟轨道单线简支梁线桥模型,分析40 t轴重列车作用下线路纵向位移阻力曲线变化对重载铁路无缝线路纵向力的影响。研究结果表明:当墩顶线刚度较小时,钢轨制动附加应力随纵向阻力的增大而增大,随屈服位移的增大而减小;梁轨快速位移差随纵向阻力的增大而减小,随屈服位移的增大而增大;纵向阻力变化对桥上无缝线路纵向力的影响大于屈服位移变化对纵向力的影响。  相似文献   

6.
大跨度连续梁拱组合桥梁轨互制特征   总被引:1,自引:1,他引:0  
为研究大跨度连续梁拱组合桥梁轨相互作用特征,以梅汕线上某(34+160+34)m刚架系杆拱钢箱连续梁组合桥为背景,采用理想弹塑性模型模拟线路纵向阻力,建立"轨-拱-梁-墩"一体化空间模型,对钢轨纵向力的分布规律进行分析,对是否考虑轨道作用下的主梁应力、梁端转角、墩底纵向反力进行比较。结果表明:连续梁拱组合桥远离固定支座的梁端处钢轨纵向力较大,其中最大伸缩应力达到114.0 MPa,在不设钢轨伸缩调节器时钢轨强度仍满足要求;轨道结构对温度荷载和制动力作用下的主梁应力影响较大;轨道结构对梁端转角及墩底纵向反力的分配亦有较大影响。  相似文献   

7.
针对现有规范中断轨力取值偏于保守的现状,以铁路常用跨度32 m简支梁桥为研究对象,运用ANSYS有限元软件,建立梁-轨相互作用三维模型,进行墩顶断轨力合理取值研究。结果表明:当考虑墩顶纵向线刚度、参与受力的钢轨股数、轨温差和活动支座摩阻力等因素影响时,计算得到的墩顶断轨力均小于规范值,其中影响最大的是参与受力的钢轨股数,活动支座摩阻力影响最小,可将其作为安全储备;参与受力的钢轨股数越多,墩顶断轨力比规范值小得越多;在钢轨极限轨温差为60℃时,无砟轨道墩顶断轨力仅为规范值的85%;在考虑单线2股钢轨和双线4股钢轨参与受力、参考规范(32+32)m单双线梁墩顶纵向线刚度分别取165~1 500和265~3 000 kN·cm~(-1)时,有砟轨道和无砟轨道桥梁墩顶断轨力均随着墩顶纵向线刚度增加而增大,有砟轨道和无砟轨道(32+32)m单线梁墩顶断轨力宜分别取规范值的28%~70%和15%~49%,(32+32)m双线梁墩顶断轨力宜分别取规范值的19%~65%和8%~40%。  相似文献   

8.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

9.
运用ANSYS软件,建立某高速铁路大跨径悬索桥桥梁-轨道-塔墩空间有限元分析模型,采用组合弹簧模拟滑动支座,通过计入滑动支座摩阻力前后悬索桥桥梁-轨道系统的纵向附加力对比分析,研究支座摩阻力对梁轨相互作用的影响。结果表明:滑动支座摩阻力对大跨度悬索桥的制动附加力、偏载下的挠曲附加力和断轨附加力的影响比较显著,对伸缩附加力和对称加载下的挠曲附加力的影响较小;当摩阻系数分别为0.03,0.05和0.1时,偏载下钢轨最大挠曲附加应力分别是不计摩阻力时的58.65%,54.67%和53.39%,对称加载下钢轨最大制动附加应力分别是不计摩阻力时的72.85%,71.87%和71.01%,偏载下钢轨最大制动附加应力分别是不计摩阻力时的42.28%,39.80%和37.67%;随着摩阻系数的增大,钢轨的制动附加应力、偏载下的挠曲附加应力和断轨后钢轨断缝宽度均呈不断减小趋势,而主塔和活动墩的墩顶水平力则呈不断增大趋势。  相似文献   

10.
以重载机车牵引作用下新建重载铁路简支梁桥墩顶纵向力特征为研究对象,应用有限元软件建立梁-轨相互作用模型,开展重载机车牵引工况对墩顶纵向力影响的理论分析,并依托一新建重载铁路开展重载机车满级牵引试验验证。研究结果表明:在重载机车牵引工况下,桥墩刚度存在较大差异,刚度较大的墩台顶承担更大的纵向力;随着桥墩与机车牵引位置的距离增大,墩顶纵向力呈降低的趋势,机车在桥墩正上方牵引时墩顶纵向力达到最大值;重载运输中机车满级牵引计算分析时黏着系数宜按电力机车最大黏着系数选取;牵引工况下各桥墩顶纵向力为桥上竖向荷载(30 t轴重机车)的10%~15%,但小于设计活载(ZH,z=1.2)的10%。  相似文献   

11.
简支梁桥上无缝道岔温度力与位移影响因素分析   总被引:13,自引:1,他引:12  
将道岔、梁和墩台视为一个系统,建立简支梁桥上无缝道岔的有限元模型。根据变分原理和“对号入座”法则建立有限元方程组。以铺设一组43号道岔的18跨32 m混凝土简支梁桥为例,研究影响简支梁桥上无缝道岔受力与位移的因素,如支座布置形式、轨温变化幅度、梁温差、扣件阻力、道床阻力、限位器间隙、岔枕刚度、限位器位置、梁跨长度和桥墩刚度等。计算结果表明,简支梁桥上无缝道岔在温度荷载作用下,钢轨温度力在限位器处和限位器前梁端处同时出现两个峰值;与桥上无缝线路相比,桥上无缝道岔桥墩处的最大受力显著增大;当梁与导轨同向伸缩时,岔区内钢轨位移较大;限位器应布置在梁跨中部;限位器间隙对桥上无缝道岔的受力与位移有双重影响;岔区内钢轨的受力与位移随桥墩刚度增大而减小;岔区内采用较大的扣件阻力和道床阻力,岔区外采用较小的扣件阻力和道床阻力,可以降低钢轨附加温度力。  相似文献   

12.
为科学合理地确定不设钢轨伸缩调节器的桥梁温度跨度,通过建立线桥墩一体化计算模型,研究各种因素对有砟桥上无缝线路最大温度跨度的影响。研究结果表明:钢轨顶面垂磨增大,最大温度跨度逐渐减小;墩顶纵向水平位移增大,最大温度跨度与墩顶位移近似成等比例减少;制动力对钢轨升温幅度较大时的最大温度跨度有一定影响;大机维修所确定的温度跨度要比大机清筛的小;为减缓地震对桥梁纵移、横移的影响,高速铁路桥梁设计中应采用防落梁装置。综合分析后,考虑了轨温变化幅度、墩高2个影响因素,得出了桥梁温度跨度极值的建议值,如最大墩高小于30m,轨温变化幅度分别为30,40和50℃时,温度跨度极值分别建议为320,300和280m。  相似文献   

13.
跨兴闫公路特大桥无缝线路综合试验研究   总被引:1,自引:0,他引:1  
跨兴闫公路特大桥无缝线路综合试验是秦沈客运专线跨区间无缝线路关键技术试验研究的内容之一,内容包括桥墩纵向刚度、梁体温度变化、道床纵向阻力、伸缩力、挠曲力、梁轨纵向相对位移等测试。总结了各项试验内容的试验方法和试验结果,采用实测参数计算了伸缩力和挠曲力的理论值。结果表明:理论值与试验值基本一致;试验经验和测试结果对于验证桥上无缝线路的理论分析模型,提高桥上无缝线路的设计水平具有重要意义。  相似文献   

14.
为探究列车制动荷载作用下轨道、桥梁结构纵向受力特性及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥上CRTSⅢ型板式无砟轨道无缝线路空间耦合模型,对列车制动荷载作用下结构纵向受力特性、传递规律及其影响因素进行分析。结果表明:以全桥列车制动加载作为计算轨道及桥梁结构制动受力与变形时的最不利工况是偏安全的,并应以有载侧计算数据进行检算;桥上扣件需依据轨道板快速相对位移试算结果进行比选, WJ-8型小阻力扣件可适用于多跨简支梁桥且有较大安全冗余;桥上采用小阻力扣件或墩顶纵向刚度较小时均会使得列车制动荷载作用下的轨道板快速相对位移较大,不利于扣件的长期服役;轨道和桥梁结构制动检算过程中建议将桥跨数简化为10~15跨;需保证土工布隔离层的滑动性能,且应将其摩擦系数应控制在合理范围内。  相似文献   

15.
高速铁路桥上无缝线路纵向附加力研究   总被引:9,自引:0,他引:9  
采用实体单元模拟桥梁及桥梁墩台、空间梁单元模拟钢轨、弹簧单元模拟桥梁与墩台及轨道之间的连接,建立梁—轨纵向相互作用三维有限元空间力学模型。以丰沙线永定河单线铁路桥梁、秦沈线沙河双线铁路桥梁对其进行计算验证。以秦沈客运专线32 m多跨双线整孔简支箱型梁桥为例进行纵向力分析,研究结果表明:列车在桥上双线对开,钢轨挠曲附加力有明显增大;列车在桥上单线制动,四根钢轨的制动附加力有较大的差别;列车在桥上双线对向制动,相比单线制动,钢轨制动附加力有一定程度增大,但增大得并不多。  相似文献   

16.
桥墩纵向水平线刚度对桥上无缝线路设计的影响   总被引:4,自引:0,他引:4  
桥墩纵向水平线刚度是桥梁和无缝线路设计的关键技术参数,桥上无缝线路钢轨与墩台纵向力的分配以及梁、轨位移的大小很大程度上取决于桥墩纵向水平线刚度。结合工程实际,以客运专线常见的60 m 100 m 60m连续梁为例,分析桥墩纵向线刚度对钢轨、墩台纵向力及梁、轨位移的影响规律。  相似文献   

17.
为探讨大跨度斜拉桥上无缝线路纵向受力与变形规律,以一座多线预应力混凝土斜拉桥为例,采用有限元法建立了"塔-索-梁-轨"空间耦合有限元模型,分析了温度荷载、列车荷载以及制动荷载对桥上无缝线路纵向受力与变形的影响。结果表明:当桥塔温度变化时,钢轨伸缩力、钢轨纵向位移和桥梁的纵向位移均无明显变化,钢轨伸缩力最大幅值出现在连续梁两部,并在简支梁梁缝处出现峰值;在列车荷载作用下,各条线路的钢轨挠曲力和钢轨纵向位移随着距加载线路距离的增大而逐渐减小,钢轨挠曲力最大幅值出现在连续梁端部;在制动荷载作用下,钢轨制动力最大幅值出现在连续梁端部,并在加载的起点与终点出现峰值突变,加载的起点或终点与连续梁端部重合时为最不利位置。研究结果可为大跨度斜拉桥上无缝线路设计提供理论参考。  相似文献   

18.
对高速铁路32 m箱梁与40 m箱梁经济性问题进行研究,运用对比分析的方法,以新建铁力至伊春铁路为背景,选取本工程中头道河特大桥等3座具有代表性的特大桥梁,分别采用32 m和40 m跨度进行设计,并对其工程数量和工程概算进行对比分析.研究表明:工程地质条件、桥墩高度、桥梁长度、基础类型是影响桥梁经济性的主要因素.桥梁长...  相似文献   

19.
西安机场线渭河特大桥采用长联大跨连续梁,主桥连续梁联长900 m,最大温度跨度715 m,具有温度跨度大且多跨连续梁相接的特点,需合理设计无缝线路。针对该工况提出5个无缝线路布置方案,采用有限单元法进行无缝线路附加力计算,从钢轨强度、桥墩受力两方面进行方案比选后,现场调研国铁类似工况,确定最终推荐方案。得出结论:(50+8×100+50)m连续梁两侧梁端布置单向钢轨伸缩调节器,满足钢轨强度检算的要求且能有效减小相邻连续梁固定墩受力,无需布置双向钢轨伸缩调节器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号