首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
判别分析法在胃癌组织身源鉴定中的应用   总被引:1,自引:1,他引:0  
目的 评估基于共有基因座数或共有等位基因数的判别分析方法 在胃癌组织身源鉴定中的应用价值. 方法 采用Identifiler 试剂盒对22对新鲜的胃癌组织块及相应身源正常组织块进行STR分型,采用计数法获得胃癌组织中各基因座不同变异类型的变异率和胃癌-身源正常组织对中的全不同基因座数(A0)、半相同基因座数(A1)、全相同基因座数(A2)和共有等位基因数(IAn),将上述参数代入已知的Fisher判别函数,以误判率评价Fisher判别函数对胃癌组织身源认定的效果. 结果 22例胃癌组织中,STR基因型改变(STR genotypic alteration,STRGA)的发生率为3.03%(95%CI:1.46%-5.50%),至少有一个STR基因座出现STRGA者占31.38%(95%CI:13.86%~54.87%).采用基于共有基因座数或共有等位基因数的Fisher判别函数,本组胃癌组织均被认定与相应正常组织来自同一个体,误判率为0.00%. 结论 胃癌组织中STR基因型改变的发生率较高;基于共有基因座数或共有等位基因数的判别函数适用于胃癌组织的身源认定.  相似文献   

2.
Zhao SM  Zhang SH  Li CT 《法医学杂志》2011,27(2):102-106
目的 探讨采用Identifiler系统进行消化系统肿瘤组织身源判定时共有等位基因数(IAn)和全相同基因座数(A2)的标准.方法 在对l05对消化系统肿瘤组织-身源正常组织对进行Identifiler系统分型的基础上,依据IAn和A2的有限分布原则,将IAn的16种取值代入已建立的相应判别函数,通过Fisher判别准...  相似文献   

3.
依据共有STR基因座数判别全同胞关系   总被引:5,自引:3,他引:2  
目的建立并探讨基于共有STR基因座数的全同胞关系判别方法。方法根据280对全同胞(fullsibling,FS)及2 003对无关个体(unrelated individual,UI)Identifiler系统15个STR基因座的分型结果,采用计数法计算全不同基因座数(A0)、半相同基因座数(A1)和全相同基因座数(A2),依据ITO法计算每对受试者的全同胞指数(FSI),应用判别分析得出基于共有基因座数或FSI进行全同胞及无关个体关系判别的Fisher判别函数,并比较其判别效能。结果全同胞对中的A1、A2和无关个体对中的A0、A1均呈正态分布,全同胞对中的A0和无关个体对中的A2均呈偏态分布。A1在两组人群中的分布差异无统计学意义(P〉0.01)。同时采用A0和A2建立的全同胞及无关个体关系的判别函数分别为ZFS=0.99817A0+4.24442A2-12.77970和ZUI=2.014 56 A0+1.546 58 A2-7.280 76。采用上述判别函数进行全同胞及无关个体关系判别的平均错判率为0.049 0。上述判别函数的判别效能与基于FSI的判别函数的判别效能差异无统计学意义。结论可以采用Identifiler系统的共有基因座数进行全同胞及无关个体关系的判别,所建立的判别公式的判别效能与经典ITO法相近。  相似文献   

4.
目的建立共有等位基因数判别函数的全同胞鉴定方法,探讨检测基因座数目对鉴定的影响。方法根据344对全同胞和两两随机组合的3693对无关个体的19、21和39个常染色体STR分型结果,统计共有等位基因数,并利用SPSS软件中的Fisher判别分析法,分别建立全同胞-无关个体的判别函数及后验概率。结果同胞对和无关个体对共有等位基因数均符合正态分布,具有显著性差异,19、21和39个STR基因座同胞组判别函数分别为:L同胞=3.336×S19-40.484,L同胞=3.452×S21-46.289,L同胞=3.368×S39-84.891;无关个体组分别为:L无关=1.675×S19-10.725,L无关=1.758×S21-12.523,L无关=1.873×S39-26.738;平均错判率分别为2.060%、1.705%和0.570%。结论共有等位基因数判别函数法在全同胞-无关个体鉴定中具有应用价值,且检测基因座越多越有利于全同胞鉴定,降低错判风险。  相似文献   

5.
目的 探讨采用Identifiler系统进行全同胞关系判定时共有等位基因数(IAN)和全相同基因座数(A2)的标准.方法 依据IAN和A2的有限分布,将IAN的31种取值代入已建立的判别函数,获得判定全同胞时IAN和A2的阈值,据此确定4种标准,对经Identifiler系统分型的280对全同胞和2003对无关个体对进...  相似文献   

6.
应用常染色体STR基因座共有等位基因数判别全同胞关系   总被引:7,自引:5,他引:2  
目的建立基于常染色体STR基因座共有等位基因数的全同胞关系判别标准。方法根据280对全同胞及2003对无关个体Identifiler系统15个STR基因座的分型结果,对15个STR基因座的共有等位基因数(S15)和全同胞指数(FSI)进行统计,应用SAS8.2软件包得出Fisher判别函数并与ITO法结果进行比较。结果全同胞对及无关个体对中共有等位基因数目均符合正态分布。采用Identifiler系统15个STR基因座共有等位基因数进行全同胞关系判别时,判别函数分别为:ZFS=3.26970S15-31.51174和ZUI=1.70058S15-8.52411。用上述判别函数进行全同胞/无关个体关系判别时的平均错判率为0.0298。15个STR基因座共有等位基因数法、CODIS13个STR基因座共有等位基因数法与ITO法判别结果差异无统计学意义。结论应用常染色体STR基因座的共有等位基因数判别全同胞关系简便、可信,易于掌握且不受STR基因座等位基因频率的影响。  相似文献   

7.
常染色体STR遗传标记在同胞鉴定中的应用   总被引:17,自引:10,他引:17  
目的 探讨常染色体STR遗传标记用于鉴定两个体同胞关系的可行性。方法 用Power Plex~(TM)16体系15个STR基因座检测150对同胞个体和150对无关个体,ITO法计算同胞关系指数(PI_(FS))与同胞关系概率(W_(FS)),并比较两组W_(FS)值及两个体间等位基因匹配情况的差异,对前者进行组间差异的x~2检验。结果 100对(66.67%)同胞个体的W_(FS)大于0.9995;无关个体W_(FS)均小于0.8,其中100对(66.67%)W_(FS)小于0.27。同胞个体两个体间等位基因全相同的基因座个数为1~10个不等,平均5.49个,无关个体0~5个不等,平均1.33个;等位基因全不同的基因座个数,同胞个体0~6个不等,平均1.66个,无关个体2~11个不等,平均6.57个;等位基因半相同的基因座个数,同胞个体3~13个不等,平均7.85个,而无关个体1~13个不等,平均7.11个。经x~2检验,同胞个体和无关个体间全相同和全不同的基因座数差异均有极显著意义(P<0.001),半相同的基因座数差异无显著意义(P>0.05)。结论 PowerPlex~(TM)16体系可用于鉴定同胞关系。当两个体全不同基因座个数大于或等于6个,或全相同基因座数为0时,提示为无关个体;当两个体全不同基因座个数小于或等于1个,或全相同基因座数大于或等于6个时,提示为同胞。  相似文献   

8.
目的 考察同胞认亲案件鉴定中的风险.方法 在一例同胞关系鉴定中,采用常染色体STR检测系统及X染色体STR检测系统进行基因型分型,并用ITO法计算全同胞指数及统计共有等住基因数和全相同基因座数进行判定.结果 在该案例中,常染色体STR分型结果与X染色体STR分型结果均提示被检验同胞之间并非其声称的全同胞关系,在排除其中非全同胞个体后,对剩余全同胞进行基因型分析从而反推出其生父母基因型,并与被认个体进行基因型比对后得出排除结论,即被认个体与被检验同胞之间不存在生物学全同胞关系.结论 对于同胞认亲的案件,若无父亲和(或)母亲参与,鉴定人应尽可能地通过多种检测系统(常染色体STR、X-STR、Y-STR、mtDNA等)综合分析,从而对被检验同胞所声称的“全同胞”关系进行验证;也可用ITO法计算全同胞指数及统计共有等位基因数和全相同基因座数进行判定,这样可以互相印证鉴定结果,降低误判风险.  相似文献   

9.
目的推导通过STR等位基因频率计算生物学全同胞对间状态一致性(identity by state,IBS)评分概率分布的通用计算公式。方法依据孟德尔遗传规律和生物学全同胞(full sibling,FS)的父母为无关个体这一假设,推导得到不同基因型组合的无关个体生育两名子代时,子代不同基因型组合的IBS评分及所对应的概率。结果以f_i表示某STR基因座第i个等位基因的频率(i=1,2,…,m),则生物学全同胞对在该基因座出现2个相同等位基因的概率(p_(2FS))的计算公式为:p_(2FS)=1/4×[1+2∑i=1 m f_i~2+2(∑i=1 m f_i~2)2-∑i=1 m f_~4];在该基因座出现1个相同等位基因的概率(p_(1FS))的计算公式为:p_(1FS):1/2×[1+∑i=1 m f_i~2-2(∑i=1 m f_i~2)~2-1∑i=1 m f_i~3+2∑i=1 m f_i~4];在该基因座出现0个相同等位基因的概率(P_(0FS)),的计算公式为:p_(0FS)=1/4×[1-4∑i=1 m f_i~2+2(∑i=1 m f_i~2)~2+4∑i=1 m f_i~3-3∑i=1 m f_i~4];p_(2FS)、p_(1FS)、p_(0FS)的和为1。对于包含n个STR基因座的多重分型系统,生物学全同胞间的IBS评分符合二项分布:IBS~B(2n,π_1)。其中总体率π_1的计算公式为:π_1=1/n∑l=1 n p_(2FSl)+1/2n∑l=1 n p_(1FSl)。结论生物学全同胞鉴定中的备择假设为两名被鉴定人为生物学全同胞,对任意STR基因座组合、IBS评分所对应的备择假设概率均可通过本文所推导的公式直接进行计算,计算结果是进行证据解释的基础。  相似文献   

10.
目的探讨Y染色体微缺失和突变时,两男性个体间的全同胞关系鉴定。方法提取两样本DNA,检测Y-STR分型及常染色体STR分型,通过IBS法、ITO法及全同胞-无关个体判别函数法计算两个体间的全同胞关系。结果 33个Y-STR基因座中有2个基因座存在突变,其中一样本存在19个基因座的缺失。两样本IBS为53,大于阈值42;累积全同胞关系指数为1.36×10~(16),远远大于19;全同胞-无关个体判别函数D_(FS2)D_(R2)。因此倾向于认为两个体为全同胞。结论对于Y染色体微缺失和突变需要进行父系鉴定的情况,可以综合应用IBS法、ITO法以及全同胞-无关个体判别函数法以得出更为可靠的鉴定意见。  相似文献   

11.
Minisatellite variant repeat (MVR) mapping using the polymerase chain reaction (PCR) was devised to map the interspersion pattern of subtle variant repeats along minisatellite tandem arrays. MVR-PCR has revealed enormous diversity of allele structures at several loci, far more than can be resolved by allele length analysis. We have reported the application of MVR-PCR at minisatellite MS32 (D1S8) and MS31A (D7S21) in a paternity case lacking a mother and showed that it resulted in higher paternity probabilities than for a set of 12 other DNA markers including six STRs. Hypervariable minisatellites like MS32 and MS3lA can however, show significant germline mutation rates to new length alleles which can generate false exclusions in paternity cases although paternity cases showing mutant paternal alleles at more than one locus will be rare when several MVR loci are examined. Detailed knowledge of mutation processes coupled with MVR analysis of allele structure can help distinguish mutation from non-paternity. We now show how similar mutant alleles are to their progenitors using both real and simulated data, and demonstrate how MVR-PCR can be used to identify mutant paternal allele in paternity cases showing apparent exclusions.  相似文献   

12.
Pentanucleotide tandem repeat markers are interesting for forensic sciences, because they may present less stutter on the electrophoretic pattern. We focused on the analysis of the DNA sequence for each allele at the pentanucleotide STR locus D10S2325 in order to understand their structures in the human genome and to construct human allelic ladder, which is necessary for forensic DNA typing. In order to evaluate the forensic applicability of D10S2325 and to construct a preliminary database, the genotype distributions and allele frequencies in three major ethnic groups were investigated. The population samples included Caucasians (Germans), Africans (African Americans), and Asians (Chinese). A total of 520 samples from unrelated individuals was analyzed by Amp-FLP. An example of each allele and new alleles were sequenced. Allele determination was carried out by comparison with a sequenced human allelic ladder made in-house. This pentanucleotide STR provided easily interpretable results. A total of 15 alleles was found in our population samples. Three new alleles were observed and named as alleles 19 and 21 based on the number of repeat motifs, while allele 19 can be divided further into two alleles, 19a and 19 according to analysis of the sequence. No evidence of deviation from Hardy-Weinberg equilibrium was observed. In 64 confirmed father/mother/child triplets no mutation event was observed. Using a maximum likelihood method, the mutation rate was indirectly estimated as 2.5 x 10(-5). These results suggest that D10S2325 is a useful marker for forensic casework and paternity analysis.  相似文献   

13.
Y chromosome specific short tandem repeats (Y-STRs) are widely used in population genetics and forensics. Since these markers do not recombine, mutation is the only source of diversity. The primary mutational mechanism leading to length changes in STRs is thought to be polymerase template slippage, and the most common change is the gain or the loss of one repeat motif. In this work, we aim to study 19 Y-STR alleles’ contraction and expansion. Alleles were grouped into tertiles: short (1st tertile), intermediate (2nd tertile) and long alleles (3rd tertile). Significant differences between repeat gains and losses were found at four markers - DYS19, DYS439 for intermediate alleles, and DYS570 and DYS626 for long alleles. When the average number is computed for the pooled loci, for short alleles, the number of repeat motif gains is higher than of repeat losses, and the opposite happens for long alleles. For intermediate alleles, the proportion between the number of repeat gains and losses is close to one. Generally, the rate of expansion decreases from the first tertile to the third, and conversely, the rate of contraction increases from the first tertile to the third. The pooled loci tertiles’ mutation rate increases from short to long alleles. Our results demonstrate that the mutation direction and rate depend on alleles’ length. The longer the allele the greater the mutation and contraction rates.  相似文献   

14.
D8S384 is a tetranucleotide tandem repeat locus. In order to evaluate the forensic validation of D8S384, the genotype distributions and allele frequencies in ten populations from three main ethnic groups were investigated, including Germans, Slovakians, African Americans, Japanese, and Chinese (Jilin, Guangzhou, Nanning, Hailaer, Dali, and Chengdu). A total of 1011 unrelated individuals, 41 pedigrees, 30 disputed paternity trios and three personal identification cases were analyzed for D8S384 by Amp-FLP technique. Many kinds of tissues, body fluids, secreta and stains have been tested. The alleles were determined by comparison with a human allele ladder. The results showed that D8S384 typing was both precise and reliable. There were eight alleles in these populations. The genotype distributions conformed to Hardy-Weinberg equilibrium predictions. No mutation events were observed. With a maximum likelihood method, the mutation rate was indirectly estimated as 2.14 x 10(-5). The heterozygosity was 0.704 +/- 0.014 at D8S384 locus. All these results suggest that D8S384 locus is a useful marker for forensic identification and paternity analysis.  相似文献   

15.
Quality assurance samples submitted from the NCSBI as part of a contract with TBTG to outsource DNA Database samples showed unexpected discrepancies for the locus D16S539 when all other loci yielded identical results. Discrepancies observed included allele drop out and an imbalance in sister alleles with samples returned from TBTG. This led to a comprehensive review of the technical procedures used between the two laboratories to determine the cause of the discrepancies noted for the locus D16S539, since both laboratories were using the PowerPlex 1.1 typing kit from the Promega Corporation. The NCSBI and the TBTG utilize different extraction methods (organic extraction vs. FTA) and amplification conditions (AmpliTaq vs AmpliTaq Gold), respectively, so the exact cause of discrepancy observed was not immediately apparent. Experiments at the NCSBI associated the observed allele drop out and the imbalance of the sister alleles with the use of AmpliTaq Gold and a hot start procedure. Sequencing data revealed that a point mutation resides on the D16S539 primer-binding site that reaches polymorphic levels in African-American populations. This led to the development of a degenerate primer by the Promega Corporation to detect "missing" alleles when AmpliTaq Gold is used. The degenerate primer was then thoroughly tested to show its efficacy in detecting the "true" D16S539 profile when used.  相似文献   

16.
目的观察和分析STRtyper-10G系统9个STR基因座的突变特点。方法在7 707例肯定亲子关系的案件中,统计使用STRtyper-10G试剂盒(9个STR基因座)检测发现的突变事件,判断突变等位基因的来源,计算各基因座的突变率,分析突变特点。结果在9个基因座上共发现118个突变事件,均为1步突变;平均突变率为1.69×10-3(95%CI 1.40×10-3~2.03×10-3),各基因座的突变率介于0.78×10-3~2.84×10-3,父、母来源突变比例为9.64∶1;短、中、长等位基因的突变比值约为1∶8∶3,增加和减少重复单位的突变比值为1.29∶1。结论 9个基因座的突变率存在显著差异,实际检案时应结合各基因座的突变率进行PI值计算更为科学。  相似文献   

17.
A collaborative exercise was carried out by the Spanish and Portuguese ISFG Working Group (GEP-ISFG) in order to evaluate the performance of two Y-chromosome STR PCR tetraplexes, which include the loci DYS461, GATA C4, DYS437 and DYS438 (GEPY I), and DYS460, GATA A10, GATA H4 and DYS439 (GEPY II). The participating laboratories were asked to type three samples for the eight markers, using a specific amplification protocol. In addition, two control samples, with known haplotypes, were provided. The results obtained by the 13 different participating laboratories were identical, except for two laboratories that failed to type correctly the same two samples for GATA C4. By sequence analyses, two different GATA C4 allele structures were found. One control sample (allele 21) and two questioned samples (allele 22, correctly typed by all the laboratories, and allele 25) presented the following repeat structure: (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)n, but different from the one found for allele 26 in one sample included in this exercise, as well as in the second control sample (allele 23), namely (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TGTA)2(TCTA)n. The collaborative exercise results proved that both Y-tetraplexes produce good amplification results, with the advantage of being efficiently typed using different separation and detection methodologies. However, since GATA C4 repeat presents a complex structure, with alleles differing in sequence structure, efficient denaturing conditions should be followed in order to avoid typing errors due to sizing problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号