首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• Bi doping in TiO2 enhanced the separation of photo-generated electron-hole. • The performance of photocatalytic degradation of MC-LR was improved. • Coexisting substances have no influence on algal removal performance. • The key reactive oxygen species were h+ and OH in the photocatalytic process. The increase in occurrence and severity of cyanobacteria blooms is causing increasing concern; moreover, human and animal health is affected by the toxic effects of Microcystin-LR released into the water. In this paper, a floating photocatalyst for the photocatalytic inactivation of the harmful algae Microcystis aeruginosa (M. aeruginosa) was prepared using a simple sol-gel method, i.e., coating g-C3N4 coupled with Bi-doped TiO2 on Al2O3-modified expanded perlite (CBTA for short). The impact of different molar ratios of Bi/Ti on CBTA was considered. The results indicated that Bi doping in TiO2 inhibited photogenerated electron-hole pair recombination. With 6 h of visible light illumination, 75.9% of M. aeruginosa (initial concentration= 2.7 × 106 cells/L) and 83.7% of Microcystin-LR (initial concentration= 100 μg/L) could be removed with the addition of 2 g/L CBTA-1% (i.e., Bi/Ti molar ratio= 1%). The key reactive oxygen species (ROSs) in the photocatalytic inactivation process are h+ and OH. The induction of the Bi4+/Bi3+ species by the incorporation of Bi could narrow the bandgap of TiO2, trap electrons, and enhance the stability of CBTA-1% in the solutions with coexisting environmental substances.  相似文献   

2.
• Fungi enable the constant UASB operation even at OLR of 25.0 kg/(m3×d). • The COD removal of 85.9% and methane production of 5.6 m3/(m3×d) are achieved. • Fungi inhibit VFAs accumulation and favor EPS generation and sludge granulation. • Fungi enrich methanogenic archaea and promote methanogenic pathways. Anaerobic digestion is widely applied in organic wastewater treatment coupled with bioenergy production, and how to stabilize its work at the high organic loading rate (OLR) remains a challenge. Herein, we proposed a new strategy to address this issue via involving the synergetic role of the Aspergillus sydowii 8L-9-F02 immobilized beads (AEBs). A long-term (210-day) continuous-mode operation indicated that the upflow anaerobic sludge bed (UASB) reactor (R1, with AEBs added) could achieve the OLR as high as 25.0 kg/(m3×d), whereas the control reactor (R0, with AEBs free) could only tolerate the maximum OLR of 13.3 kg/(m3×d). Remarkably, much higher COD removal (85.9% vs 23.9%) and methane production (5.4 m3/(m3×d) vs 2.2 m3/(m3×d)) were achieved in R1 than R0 at the OLR of 25.0 kg/(m3×d). Such favorable effect results from the facts that fungi inhibit VFAs accumulation, favor the pH stabilization, promote the generation of more extracellular polymeric substance, and enhance the sludge granulation and settleability. Moreover, fungi may enhance the secretion of acetyl-coenzyme A, a key compound in converting organic matters to CO2. In addition, fungi are favorable to enrich methanogenic archaea even at high OLR, improving the activity of acetate kinase and coenzyme F420 for more efficient methanogenic pathway. This work may shed new light on how to achieve higher OLR and methane production in anaerobic digestion of wastewater.  相似文献   

3.
•Annual mean PM2.5 in Shijiazhuang were 87, 95, and 82 µg/m3 in 2015–2017. •Health risk of cardiovascular system was higher than respiratory system. •Premature mortality attributed to PM2.5 was 5088 people in 2017. •ΔMort and YLL reduced by 84.2% and 84.6% when PM2.5 reduced to 10 µg/m3. •Health risks due to PM2.5 were severe in Shijiazhuang in 2015–2017. Shijiazhuang is one of the cities in the North China Plain. In recent decades, this city has experienced high levels of fine particulate matter (PM2.5), which have potentially significant effects on human health. In this study, the health effects of PM2.5 exposure in Shijiazhuang were estimated by applying an integrated exposure-response model. Premature mortality, years of life lost (YLL), and the mortality benefits linked to reduced levels of PM2.5 were quantified for the period 2015–2017. In 2015, 2016, and 2017, cerebrovascular diseases caused the highest premature mortality (2432, 2449, and 2483, respectively), followed by ischemic heart diseases (1391, 1479, and 1493, respectively), lung cancer (639,660, and 639, respectively), and chronic obstructive pulmonary diseases (533, 519, and 473, respectively). Notably, the total number of premature deaths caused by PM2.5 exposure in Shijiazhuang in 2015, 2016, and 2017 were 4994, 5107, and 5088, respectively. Moreover, the YLL in the same years were 47001, 47880 and 47381, respectively. Interestingly, the YLL per 1000 females was lower than that per 1000 males. Finally, we noted that premature mortality and YLL decreased by 84.2% and 84.6% when the PM2.5 levels diminished to 10 µg/m3. Overall, the results of this study improve our understanding of how high PM2.5 concentrations affect human health and suggest the application of more stringent measures in Shijiazhuang to alleviate the associated health risks.  相似文献   

4.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   

5.
• The NPs aggregation in the electrolyte solution is consistent with the DLVO theory. • In NaNO3 and low Ca(NO3)2, EPS alleviates the NPs aggregation by steric repulsion. • In high Ca(NO3)2, EPS accelerates the NPs aggregation by exopolysaccharide bridging. • Ag2S NPs have stronger stability compared with Cit-Ag NPs in aqueous systems. Extracellular polymeric substances (EPS) in activated sludge from wastewater treatment plants (WWTPs) could affect interactions between nanoparticles and alter their migration behavior. The influence mechanisms of silver nanoparticles (Ag NPs) and silver sulfide nanoparticles (Ag2S NPs) aggregated by active EPS sludge were studied in monovalent or divalent cation solutions. The aggregation behaviors of the NPs without EPS followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The counterions aggravated the aggregation of both NPs, and the divalent cation had a strong neutralizing effect due to the decrease in electrostatic repulsive force. Through extended DLVO (EDLVO) model analysis, in NaNO3 and low-concentration Ca(NO3)2 (<10 mmol/L) solutions, EPS could alleviate the aggregation behaviors of Cit-Ag NPs and Ag2S NPs due to the enhancement of steric repulsive forces. At high concentrations of Ca(NO3)2 (10‒100 mmol/L), exopolysaccharide macromolecules could promote the aggregation of Cit-Ag NPs and Ag2S NPs by interparticle bridging. As the final transformation form of Ag NPs in water environments, Ag2S NPs had better stability, possibly due to their small van der Waals forces and their strong steric repulsive forces. It is essential to elucidate the surface mechanisms between EPS and NPs to understand the different fates of metal-based and metal-sulfide NPs in WWTP systems.  相似文献   

6.
• Complete CT degradation was achieved by employing HA to CP/Fe(II)/FA process. • Quantitative detection of Fe(II) regeneration and HO• production was investigated. • Benzoic acid outcompeted FA for the reaction with HO•. • CO2 was the dominant reductive radical for CT removal. • Effects of solution matrix on CT removal were conducted. Hydroxyl radicals (HO•) show low reactivity with perchlorinated hydrocarbons, such as carbon tetrachloride (CT), in conventional Fenton reactions, therefore, the generation of reductive radicals has attracted increasing attention. This study investigated the enhancement of CT degradation by the synergistic effects of hydroxylamine (HA) and formic acid (FA) (initial [CT] = 0.13 mmol/L) in a Fe(II) activated calcium peroxide (CP) Fenton process. CT degradation increased from 56.6% to 99.9% with the addition of 0.78 mmol/L HA to the CP/Fe(II)/FA/CT process in a molar ratio of 12/6/12/1. The results also showed that the presence of HA enhanced the regeneration of Fe(II) from Fe(III), and the production of HO• increased one-fold when employing benzoic acid as the HO• probe. Additionally, FA slightly improves the production of HO•. A study of the mechanism confirmed that the carbon dioxide radical (CO2), a strong reductant generated by the reaction between FA and HO•, was the dominant radical responsible for CT degradation. Almost complete CT dechlorination was achieved in the process. The presence of humic acid and chloride ion slightly decreased CT removal, while high doses of bicarbonate and high pH inhibited CT degradation. This study helps us to better understand the synergistic roles of FA and HA for HO• and CO2 generation and the removal of perchlorinated hydrocarbons in modified Fenton systems.  相似文献   

7.
• DTPA and NH4OAc, HNO3 and EDTA, and MgCl2 and NH4NO3 had similar behavior. • In NH4OAc, DTPA, and EDTA, the possibility of re-adsorption of trace elements is low. • CaCl2 may be more suitable than other extracts in calcareous soils. Understanding trace elements mobility in soils, extracting agents, and their relationships with soil components, are essential for predicting their movement in soil profile and availability to plants. A laboratory study was conducted to evaluate extractability of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), and zinc (Zn) from calcareous soils utilizing various extracting agents to be specific CaCl2, DTPA, EDTA, HNO3, MgCl2, NaNO3, NH4NO3, and NH4OAc. Cluster analysis indicated that DTPA and NH4OAc, HNO3 and EDTA, and MgCl2 and NH4NO3 extracting agents yielded comparative values, whereas NaNO3 and CaCl2 have shown different behavior than other extracting agents for all studied trace elements. The speciation of extracted trace elements in solutions indicated that in the CaCl2, NaNO3, NH4NO3, and MgCl2 extracting agents most extracted Cd, Co, Ni, Zn, and part of Cu were as free ions and may be re-adsorbed on soils, leading to lower extractability, whereas, in the case of HNO3 extracting agent, the likelihood of re-adsorption of trace elements may be little. The results of speciation of trace elements using NH4OAc, DTPA, and EDTA extracting agents showed that Me-(Acetate)3, Me-(Acetate)2(aq), Me(DTPA)3, Me(EDTA)2, and MeH(EDTA) complexes dominated in solutions indicating that the extracted trace elements may not be re-adsorbed on soils, leading to higher extractability. The results of this study are useful for short and long-term evaluations of trace elements mobility and further environmental impacts.  相似文献   

8.
• SMX was mainly degraded by hydrolysis, isoxazole oxidation and double-bond addition. • Isoxazole oxidation and bond addition products were formed by direct ozonation. • Hydroxylated products were produced by indirect oxidation. • NOM mainly affected the degradation of SMX by consuming OH rather than O3. • Inhibitory effect of NOM on SMX removal was related to the components’ aromaticity. Sulfamethoxazole (SMX) is commonly detected in wastewater and cannot be completely decomposed during conventional treatment processes. Ozone (O3) is often used in water treatment. This study explored the influence of natural organic matters (NOM) in secondary effluent of a sewage treatment plant on the ozonation pathways of SMX. The changes in NOM components during ozonation were also analyzed. SMX was primarily degraded by hydrolysis, isoxazole-ring opening, and double-bond addition, whereas hydroxylation was not the principal route given the low maximum abundances of the hydroxylated products, with m/z of 269 and 287. The hydroxylation process occurred mainly through indirect oxidation because the maximum abundances of the products reduced by about 70% after the radical quencher was added, whereas isoxazole-ring opening and double-bond addition processes mainly depended on direct oxidation, which was unaffected by the quencher. NOM mainly affected the degradation of micropollutants by consuming OH rather than O3 molecules, resulting in the 63%–85% decrease in indirect oxidation products. The NOM in the effluent were also degraded simultaneously during ozonation, and the components with larger aromaticity were more likely degraded through direct oxidation. The dependences of the three main components of NOM in the effluent on indirect oxidation followed the sequence: humic-like substances>fluvic-like substances>protein-like substances. This study reveals the ozonation mechanism of SMX in secondary effluent and provides a theoretical basis for the control of SMX and its degradation products in actual water treatment.  相似文献   

9.
• With the same charge, current density had little effect on As(III) removal in ACEC. • ACEC had the lowest energy consumption compared with EC/O2 or EC/N2. • There was a trade-off relationship between energy consumption and removal time. • The ·OH concentration in ACEC was 1.5 times of that in the EC/O2 system. Naturally occurring arsenic enrichment in groundwater poses a huge threat to human health. Air cathode electrocoagulation (ACEC) has recently been proposed to enhance As(III) oxidation and lower energy consumption. In this study, ACEC, EC/O2 and EC/N2 were evaluated with different current densities from 1 to 8 mA/cm2 to investigate the effect on As(III) removal in different redox environments. Current density had no appreciable effect on arsenic removal efficiency given the same charge in ACEC because the concentration ratio of Fe/H2O2 under different current densities remained stable. However, in EC/O2 and EC/N2, As(III) removal was inhibited at higher current densities (4–8 mA/cm2), likely because more Fe(II) competed with As(III) for the oxidant, leading to less effective oxidation of As(III). In all EC systems, the ·OH units generated per power consumption reached the highest value at the lowest current density. Compared with other EC systems, the ACEC system showed lower energy consumption at all current densities due to the low energy consumption of the electrode reaction and more free radical generation. A lower current density saved more energy at the expense of time, showing the trade-off relationship between energy consumption and removal time. The operation costs for As(III) removal under optimal conditions were calculated as 0.028 $/m3 for ACEC, 0.030 $/m3 for EC/O2, and 0.085 $/m3 for EC/N2  相似文献   

10.
• The Chinese population exposure habits were surveyed. • The risks of three scenarios of reclaimed water utilization were evaluated by QMRA. • The risks were markedly higher than the threshold (10−4 pppy) recommended by WHO. • The risks were age-, educational background-, region- and gender-specific. Reclaimed water utilization provides an effective way to alleviate water shortage. However, the residual pathogens in the recycled water like Legionella, could be spread into the air as aerosols through water-to-air transmission process. Inhaling the aerosols by the people nearby increases their susceptibility to diseases. For estimating the health risks associated with the potential exposure of airborne Legionella emitted from the urban use of reclaimed water in China, nationwide questionnaire was designed to investigate the exposure habits of Chinese population in different scenarios. Quantitative microbial risk assessment (QMRA) served as the suitable explanatory tool to estimate the risk. The results indicated that annual infection probability of populations exposed to Legionella for three scenarios, 0.0764 (95% CI: 0.0032–0.6880) for road cleaning, 1.0000 (95% CI: 0.1883–1.0000) for greenfield irrigation, 0.9981 (95% CI: 0.0784–1.0000) for landscape fountain, were markedly higher than the threshold recommended by WHO (10−4 per person per year (pppy)) according to the concentration distribution of Legionella in the reclaimed water. An age-, educational background-, region- and gender-specific data in annual infection probability also showed different tendencies for some subpopulations. This study provides some detailed information on the health risks from the water reuse in China and will be useful to promote the safe application of reclaimed water in water-deficient areas.  相似文献   

11.
• Regulation of redox conditions promotes the generation of free radicals on HM. • HM-PFRs can be fractionated into active and inactive types depending on stability. • The newly produced PFRs readily release electrons to oxygen and generate ROS. • PFR-induced ROS mediate the transformation of organic contaminants adsorbed on HM. The role of humic substance-associated persistent free radicals (PFRs) in the fate of organic contaminants under various redox conditions remains unknown. This study examined the characterization of original metal-free peat humin (HM), and HM treated with varying concentrations of H2O2 and L-ascorbic acid (VC) (assigned as H2O2-HM and VC-HM). The concentration of PFRs in HM increased with the addition of VC/H2O2 at concentrations less than 0.08 M. The evolution of PFRs in HM under different environmental conditions (e.g., oxic/anoxic and humidity) was investigated. Two types of PFRs were detected in HM: a relatively stable radical existed in the original sample, and the other type, which was generated by redox treatments, was relatively unstable. The spin densities of VC/H2O2-HM readily returned to the original value under relatively high humidity and oxic conditions. During this process, the HM-associated “unstable” free radicals released an electron to O2, inducing the formation of reactive oxygen species (ROS, i.e., OH and O2). The generated ROS promoted the degradation of polycyclic aromatic hydrocarbons based on the radical quenching measurements. The transformation rates followed the order naphthalene>phenanthrene>anthracene>benzo[a]pyrene. Our results provide valuable insight into the HM-induced transformation of organic contaminants under natural conditions.  相似文献   

12.
•ZnO/Perlite inactivated 72% of bioaerosols in continuous gas phase. •TiO2 triggered the highest level of cytotoxicity with 95% dead cells onto Poraver. •Inactivation mechanism occurred by membrane damage, morphological changes and lysis. •ZnO/Poraver showed null inactivation of bioaerosols. •Catalysts losses at the outlet of the photoreactor for all systems were negligible. Bioaerosols are airborne microorganisms that cause infectious sickness, respiratory and chronic health issues. They have become a latent threat, particularly in indoor environment. Photocatalysis is a promising process to inactivate completely bioaerosols from air. However, in systems treating a continuous air flow, catalysts can be partially lost in the gaseous effluent. To avoid such phenomenon, supporting materials can be used to fix catalysts. In the present work, four photocatalytic systems using Perlite or Poraver glass beads impregnated with ZnO or TiO2 were tested. The inactivation mechanism of bioaerosols and the cytotoxic effect of the catalysts to bioaerosols were studied. The plug flow photocatalytic reactor treated a bioaerosol flow of 460×1 06 cells/m3air with a residence time of 5.7 s. Flow Cytometry (FC) was used to quantify and characterize bioaerosols in terms of dead, injured and live cells. The most efficient system was ZnO/Perlite with 72% inactivation of bioaerosols, maintaining such inactivation during 7.5 h due to the higher water retention capacity of Perlite (2.8 mL/gPerlite) in comparison with Poraver (1.5 mL/gPerlite). However, a global balance showed that TiO2/Poraver system triggered the highest level of cytotoxicity to bioaerosols retained on the support after 96 h with 95% of dead cells. SEM and FC analyses showed that the mechanism of inactivation with ZnO was based on membrane damage, morphological cell changes and cell lysis; whereas only membrane damage and cell lysis were involved with TiO2. Overall, results highlighted that photocatalytic technologies can completely inactivate bioaerosols in indoor environments.  相似文献   

13.
• Nano Fe2O3 and N-doped graphene was prepared via a one-step ball milling method. • The maximum power density of Fe-N-G in MFC was 390% of that of pristine graphite. • Active sites like nano Fe2O3, pyridinic N and Fe-N groups were formed in Fe-N-G. • The improvement of Fe-N-G was due to full exposure of active sites on graphene. Developing high activity, low-cost and long durability catalysts for oxygen reduction reaction is of great significance for the practical application of microbial fuel cells. The full exposure of active sites in catalysts can enhance catalytic activity dramatically. Here, novel Fe-N-doped graphene is successfully synthesized via a one-step in situ ball milling method. Pristine graphite, ball milling graphene, N-doped graphene and Fe-N-doped graphene are applied in air cathodes, and enhanced performance is observed in microbial fuel cells with graphene-based catalysts. Particularly, Fe-N-doped graphene achieves the highest oxygen reduction reaction activity, with a maximum power density of 1380±20 mW/m2 in microbial fuel cells and a current density of 23.8 A/m2 at –0.16 V in electrochemical tests, which are comparable to commercial Pt and 390% and 640% of those of pristine graphite. An investigation of the material characteristics reveals that the superior performance of Fe-N-doped graphene results from the full exposure of Fe2O3 nanoparticles, pyrrolic N, pyridinic N and excellent Fe-N-G active sites on the graphene matrix. This work not only suggests the strategy of maximally exposing active sites to optimize the potential of catalysts but also provides promising catalysts for the use of microbial fuel cells in sustainable energy generation.  相似文献   

14.
• Forward osmosis (FO) coupled with chemical softening for CCI ROC minimization • Effective removal of scale precursor ions by lime-soda ash softening • Enhanced water recovery from 54% to 86% by mitigation of FO membrane scaling • High-purity CaCO3 was recovered from the softening sludge • Membrane cleaning efficiency of 88.5% was obtained by EDTA for softened ROC Reverse osmosis (RO) is frequently used for water reclamation from treated wastewater or desalination plants. The RO concentrate (ROC) produced from the coal chemical industry (CCI) generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions, such as Na+, Ca2+, Mg2+, Cl, and SO42. To address this issue, in this study, we focused on coupling forward osmosis (FO) with chemical softening (FO-CS) for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO3. In the case of the real raw CCI ROC, softening treatment by lime-soda ash was shown to effectively remove Ca2+/Ba2+ (>98.5%) and Mg2+/Sr2+/Si (>80%), as well as significantly mitigate membrane scaling during FO. The softened ROC and raw ROC corresponded to a maximum water recovery of 86% and 54%, respectively. During cyclic FO tests (4 × 10 h), a 27% decline in the water flux was observed for raw ROC, whereas only 4% was observed for softened ROC. The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC (88.5%) than that for raw ROC (49.0%). In addition, CaCO3 (92.2% purity) was recovered from the softening sludge with an average yield of 5.6 kg/m3 treated ROC. This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery, which makes the treatment of CCI ROC more efficient and more economical.  相似文献   

15.
• The membrane bioreactor cost decreased by 38.2% by decreasing HRT from 72 h to 36 h. • Capital and operation costs contributed 62.1% and 37.9% to decreased costs. • The membrane bioreactor is 32.6% cheaper than the oxidation ditch for treatment. • The effluent COD also improved from 709.93±62.75 mg/L to 280±17.32 mg/L. • Further treatment also benefited from lower pretreatment investment. A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost. Different hydraulic retention times (72–24 h) were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater. Field experimental data from the membrane bioreactor, both full-scale (500 m3/d) and pilot (1.0 m3/d), were used to calculate the net present value (NPV), incorporating both capital expenditure (CAPEX) and operating expenditure. The results showed that the tank cost was estimated above membrane cost in the membrane bioreactor. The decreased hydraulic retention time from 72 to 36 h reduced the NPV by 38.2%, where capital expenditure contributed 24.2% more than operational expenditure. Tank construction cost was decisive in determining the net present value contributed 62.1% to the capital expenditure. The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane, while flux decline was tolerable. The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent. The upgrade to the membrane bioreactor also benefited further treatments by 10.1%–44.7% lower direct investment.  相似文献   

16.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   

17.
• The MCNZVI is prepared as an interesting material for PS activation. • Graphitized carbon shells facilitate electron transfer from Fe0. • The MCNZVI exhibits excellent performance to degrade RB5 by 1O2. • The MCNZVI has high stability and reusability in the oxidation system. High-efficiency and cost-effective catalysts with available strategies for persulfate (PS) activation are critical for the complete mineralization of organic contaminants in the environmental remediation and protection fields. A nanoscale zero-valent iron-embedded modified mesoporous carbon (MCNZVI) with a core-shell structure is synthesized using the hydrothermal synthesis method and high-temperature pyrolysis. The results showed that nZVI could be impregnated within mesoporous carbon frameworks with a comparatively high graphitization degree, rich nitrogen doping content, and a large surface area and pore volume. This material was used as a persulfate activator for the oxidation removal of Reactive Black 5 (RB5). The effects of the material dosage, PS concentration, pH, and some inorganic anions (i.e., Cl, SO42) on RB5 degradation were then investigated. The highest degradation efficiency (97.3%) of RB5 was achieved via PS (20 mmol/L) activation by the MCNZVI (0.5 g/L). The pseudo-first-order kinetics (k = 2.11 × 102 min1) in the MCNZVI/PS (0.5 g/L, 20 mmol/L) was greater than 100 times than that in the MCNZVI and PS. The reactive oxygen species (ROS), including 1O2, SO4·, HO·, and ·O2, were generated by PS activation with the MCNZVI. Singlet oxygen was demonstrated to be the primary ROS responsible for the RB5 degradation. The MCNZVI could be reused and regenerated for recycling. This work provides new insights into PS activation to remove organic contamination.  相似文献   

18.
• The sampling was conducted in city on the Yunnan-Guizhou Plateau for one year. • The groups of PAHs revealed their different environmental fates and migration paths. • Seasonal biomass burning could affect the concentration by long-distance transport. • Industrial sources and traffic emissions were the main contributor of PAHs. • Living in industrial areas or winter had higher health risk by exposure PAHs in PM2.5. Monthly particle-phase ambient samples collected at six sampling locations in Yuxi, a high-altitude city on the edge of Southeast Asia, were measured for particle-associated PAHs. As trace substances, polycyclic aromatic hydrocarbons (PAHs) are susceptible to the influences of meteorological conditions, emissions, and gas-particulate partitioning and it is challenging job to precise quantify the source and define the transmission path. The daily concentrations of total PM2.5-bound PAHs ranged from 0.65 to 80.76 ng/m3, with an annual mean of 11.94 ng/m3. Here, we found that the concentration of PM2.5-bound PAHs in winter was significantly higher than that in summer, which was mainly due to source and meteorology influence. The increase of fossil combustion and biomass burning in cold season became the main contributors of PAHs, while precipitation and low temperature exacerbated this difference. According to the concentration variation trend of PM2.5-bound PAHs and their relationship with meteorological conditions, a new grouping of PAHs is applied, which suggested that PAHs have different environmental fates and migration paths. A combination of source analysis and trajectory model supported local sources from combustion of fossil fuel and vehicle exhaust contributed to the major portion on PAHs in particle, but on the Indochina Peninsula the large number of pollutants emitted by biomass burning during the fire season would affect the composition of PAHs through long-range transporting. Risk assessment in spatial and temporal variability suggested that citizens living in industrial areas were higher health risk caused by exposure the PM2.5-bound PAHs than that in other regions, and the risk in winter was three times than in summer.  相似文献   

19.
• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation. • It can be easily separated and collected from water in an external magnetic field. • BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%. • Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process. • The reusability of this composite was confirmed by five successive recycling runs. Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.  相似文献   

20.
• Retrofitting from CAS to MBR increased effluent quality and environmental benefits. • Retrofitting from CAS to MBR increased energy consumption but not operating cost. • Retrofitting from CAS to MBR increased the net profit and cost efficiency. • The advantage of MBR is related to the adopted effluent standard. • The techno-economy of MBR improves with stricter effluent standards. While a growing number of wastewater treatment plants (WWTPs) are being retrofitted from the conventional activated sludge (CAS) process to the membrane bioreactor (MBR) process, the debate on the techno-economy of MBR vs. CAS has continued and calls for a thorough assessment based on techno-economic valuation. In this study, we analyzed the operating data of 20 large-scale WWTPs (capacity≥10000 m3/d) and compared their techno-economy before and after the retrofitting from CAS to MBR. Through cost-benefit analysis, we evaluated the net profit by subtracting the operating cost from the environmental benefit (estimated by the shadow price of pollutant removal and water reclamation). After the retrofitting, the removal rate of pollutants increased (e.g., from 89.0% to 93.3% on average for NH3-N), the average energy consumption increased from 0.40 to 0.57 kWh/m3, but the operating cost did not increase significantly. The average marginal environmental benefit increased remarkably (from 0.47 to 0.66 CNY/g for NH3-N removal), leading to an increase in the average net profit from 19.4 to 24.4 CNY/m3. We further scored the technical efficiencies via data envelopment analysis based on non-radial directional distance functions. After the retrofitting, the relative cost efficiency increased from 0.70 to 0.73 (the theoretical maximum is 1), while the relative energy efficiency did not change significantly. The techno-economy is closely related to the effluent standard adopted, particularly when truncating the extra benefit of pollutant removal beyond the standard in economic modeling. The modeling results suggested that MBR is more profitable than CAS given stricter effluent standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号