首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对蚀刻废液及其回收后生产的碱式氯化铜产品中二英(PCDD/Fs)和二英类多氯联苯(dl-PCBs)进行了分析研究,并比较了采用去除工艺前后两类污染物含量水平的变化特征.利用高分辨气相色谱/高分辨质谱对样品中PCDD/Fs和dl-PCBs进行分析,结果表明,氯化铜废液中PCDD/Fs和dl-PCBs的平均总浓度分别为264、139 pg·mL-1,而铜氨液中浓度分别为0.09、0.50 pg·mL-1;碱式氯化铜产品中浓度分别为106 pg·g-1(2.79 pg WHO-TEQ2005·g-1)和27.8 pg·g-1(0.69 pg WHO-TEQ2005·g-1);而经过吸附和过滤等去除工艺后,产品中PCDD/Fs和dl-PCBs的TEQ浓度水平分别降低至0.10—0.25 pg WHO-TEQ2005·g-1和0.05—0.72 pg WHO-TEQ2005·g-1,满足欧盟对于矿物源性饲料添加剂中PCDD/Fs和dl-PCBs的限量标准要求.研究表明该工艺能够有效去除利用蚀刻废液生产碱式氯化铜过程中的二英类污染物.  相似文献   

2.
南四湖沉积物中二(口恶)英类化合物的分布   总被引:3,自引:0,他引:3  
用13C同位素内标法,高分辨率气相色谱-高分辨率质谱对南四湖表层沉积物中17种含2,3,7,8-氯代二苯并二NB12E英/呋喃(PCDD/Fs)及12种共平面多氯联苯(Co-PCBs)的含量、同系物异构体的分布特征、沉积通量、毒性当量及来源进行了初步分析,并与山东近海(日照、烟台、青岛)的测定结果进行比较.总Co-PCBs含量分别为54.4pg·g-1dw(南阳湖)和41.4pg·g-1dw(微山湖).总PCDD/Fs含量分别为106.7pg·g-1 dw(南阳湖)和147.0pg·g-1 dw(微山湖).两湖含2,3,7,8-PCDD/Fs异构体对总毒性当量浓度的贡献基本相同,即以四-五氯代异构体为主.PCDD/Fs含量次序为青岛>日照>南四湖>烟台.南四湖、日照、烟台近海沉积物中的PCDD/Fs对总TEQ(PCDD/F-TEQ+PCB-TEQ)的贡献为68.8%-93.0%.南四湖与山东近海沉积物中PCDDs/PCDFs比值和OCDD%∑百分比表明,山东省PCDD/Fs的来源较为一致,相对恒定.除河口处外,大气沉降应是南四湖及山东近海PCDD/Fs的主要来源.  相似文献   

3.
南四湖沉积物中二噁英类化合物的分布   总被引:2,自引:0,他引:2  
用1 3C同位素内标法 ,高分辨率气相色谱 高分辨率质谱对南四湖表层沉积物中 1 7种含 2 3 7 8 氯代二苯并二英 /呋喃 (PCDD/Fs)及 1 2种共平面多氯联苯 (Co PCBs)的含量、同系物异构体的分布特征、沉积通量、毒性当量及来源进行了初步分析 ,并与山东近海 (日照、烟台、青岛 )的测定结果进行比较 .总Co PCBs含量分别为 5 4 4pg·g- 1 dw (南阳湖 )和 41 4pg·g- 1 dw (微山湖 ) .总PCDD/Fs含量分别为 1 0 6 7pg·g- 1 dw (南阳湖 )和1 47 0pg·g- 1 dw (微山湖 ) .两湖含 2 3 7 8 PCDD/Fs异构体对总毒性当量浓度的贡献基本相同 ,即以四—五氯代异构体为主 .PCDD/Fs含量次序为青岛 >日照 >南四湖 >烟台 .南四湖、日照、烟台近海沉积物中的PCDD/Fs对总TEQ (PCDD/F TEQ PCB TEQ)的贡献为68 8%— 93 0 % .南四湖与山东近海沉积物中PCDDs/PCDFs比值和OCDD %∑百分比表明 ,山东省PCDD/Fs的来源较为一致 ,相对恒定 .除河口处外 ,大气沉降应是南四湖及山东近海PCDD/Fs的主要来源 .  相似文献   

4.
2013年9月采集洞庭湖区三口四水入湖口,东、西、南洞庭湖湖区以及出湖口沉积物,采用同位素稀释高分辨气相色谱-高分辨质谱法测定了沉积物中的二英( PCDD/Fs).结果表明洞庭湖沉积物中二英的浓度范围为153—7144 pg·g-1 dw (干重),小河嘴最低,虞公庙最高.对比国内外其他淡水湖泊河流二英浓度,洞庭湖污染程度相对较低.二英污染水平依次为洞庭湖湖区>出湖口>入湖口,湖区内污染水平依次为南洞庭湖>东洞庭湖>西洞庭湖.主要同类物为OCDD,贡献率范围为77%—97%.PCDD/Fs的污染水平比1995年下降1—2个数量级,但和2004年污染水平相当.沉积物中二英的含量与水的流速成反比.洞庭湖出口处PCDD/Fs浓度相比入湖口和湖区浓度处于中间水平,表明洞庭湖中的二英可能会随水流进入长江中下游.  相似文献   

5.
以国内外文献和研究方法为基础,对比了液液萃取、冷冻干燥+索氏提取以及硅藻土+索氏提取3种方法提取牛奶样品中的二噁英,优化了牛奶中17种2,3,7,8位取代PCDD/Fs的测定方法,建立了冷冻干燥-索式提取-一段法层析柱+凝胶渗透色谱柱净化-高分辨气质联用分析方法.实验结果表明,17种2,3,7,8位取代的PCDD/Fs的方法检出限范围为0.003—0.033 pg·mL-1.空白加标实验中目标化合物回收率为76.0%—103.6%.同位素内标回收率为55.3%—102.7%,RSD范围为3.8%—10.3%.该分析方法准确可靠、灵敏、操作简便,适用于牛奶中二噁英的测定.  相似文献   

6.
多氯萘(PCNs)同二噁英(PCDD/Fs)和类二噁英多氯联苯(PCBs)类似,在烟气中的含量处于痕量水平,一般都在pg·m-3以下,因此分析方法要求有较高的灵敏度和选择性.以国内外的研究方法和参考文献为基础,建立了同位素内标稀释高分辨气相色谱/高分辨率质谱联用对垃圾焚烧发电厂的烟气样品中的PCNs进行分析.结果表明,该方法对17种氯取代位的PCNs单体的空白干扰在N.D.—2.1 pg之间;方法检出限范围为2.8—9.1 pg·nm-3,线性范围为0.40—240 pg·μL-1;空白加标实验中目标化合物的回收率为84.62%—116.21%,提取内标回收率为40.41%—75.79%,采样内标的回收率为88.92%—89.89%.实际烟气样品测得17种PCNs的同系物浓度分布在8.79—509 pg·nm-3之间,PCN-6的含量最高,PCNs-31S含量最低,相对标准偏差在4.43%—14.44%.该分析方法具有较高的准确性和可靠性,适用于烟气样品中多氯萘物质的测定.  相似文献   

7.
以国内外文献及标准方法为基础,优化了血清中17种2、3、7、8位取代的PCDD/Fs的测定方法,建立了同位素内标稀释-索式萃取一段法层析柱净化-高分辨气质联用分析方法.实验结果表明,17种2、3、7、8位取代的PCDD/Fs的方法检出限范围为3.72—14.74 pg.基质加标实验中目标化合物回收率为94.61%—117.14%,标准参考物质SRM1958中PCDD/Fs的多数单体测定结果也在参考值范围内.实际样品同位素内标回收率为66.2%—95.2%,RSD是4.0%—9.0%.该分析方法准确可靠、灵敏、操作简便,适用于血清中二噁英的测定.  相似文献   

8.
2013年9月采集洞庭湖区三口四水入湖口,东、西、南洞庭湖湖区以及出湖口沉积物,采用同位素稀释高分辨气相色谱-高分辨质谱法测定了沉积物中的二噁英(PCDD/Fs).结果表明洞庭湖沉积物中二噁英的浓度范围为153—7144 pg·g-1dw(干重),小河嘴最低,虞公庙最高.对比国内外其他淡水湖泊河流二噁英浓度,洞庭湖污染程度相对较低.二噁英污染水平依次为洞庭湖湖区出湖口入湖口,湖区内污染水平依次为南洞庭湖东洞庭湖西洞庭湖.主要同类物为OCDD,贡献率范围为77%—97%.PCDD/Fs的污染水平比1995年下降1—2个数量级,但和2004年污染水平相当.沉积物中二噁英的含量与水的流速成反比.洞庭湖出口处PCDD/Fs浓度相比入湖口和湖区浓度处于中间水平,表明洞庭湖中的二噁英可能会随水流进入长江中下游.  相似文献   

9.
应用同位素稀释-高分辨气相色谱/高分辨质谱(HRGC/HRMS)法分析了喜马拉雅山区海拔5000 m以上的葇籽草和棘豆样品中多氯联苯(PCBs)、多溴联苯醚(PBDEs)和二噁英(PCDD/Fs)的含量.这两种植物样品中污染物含量与世界其它偏远地区的水平基本保持一致.其中PCBs的总含量在1.94—3.62 ng.g-1干重(dw)范围内,平均值为2.60 ng.g-1dw;PCB-28和PCB-52的浓度明显较高,约占7种指示性PCBs总量的90%以上.14种PBDEs的总浓度在83.3—142 pg.g-1dw之间,平均值为116 pg.g-1dw;除BDE-85、-138、-154,以及高溴代的BDE-190和BDE-209未检出外,其它9种单体均有不同程度的检出,且以低溴代的BDE-28为主,含量占45%以上.样品中PCDD/Fs基本上未检出.由于样品采集点位于喜马拉雅山人迹罕至的珠穆朗玛峰北坡地区,周围并无工业污染源,因此植物样品中PCBs及PBDEs可能是污染物发生大气长距离传输和生物富集的结果.  相似文献   

10.
多溴二苯并-对-二恶英和多溴二苯并呋喃(PBDD/Fs)具有与多氯二苯并-对-二恶英和多氯二苯并呋喃(PCDD/Fs)相似的结构和毒性,广泛存在于多种环境介质和生物体中,已经引起了广泛的关注.本文讨论了溴代阻燃剂(BFRs)生产和处理、电子垃圾拆解和热处理、垃圾焚烧和金属冶炼等工业热过程中PBDD/Fs排放水平及生成机制.其中,PBDD/Fs在BFRs产品中的含量较高,范围为0.257—49.605μg.g-1,在电子垃圾热解处理中气相和固相的含量分别可达到57 ng TEQ.kg-1和19000 ng TEQ.kg-1,而在冶金过程烟道气中的含量范围是0.14—1.5 ng TEQ.m-3.本文还总结了PBDD/F分析方法研究进展,包括样品前处理和仪器分析方法,提出了目前影响准确定量PBDD/Fs的因素以及相关的解决措施.归纳了当前环境介质和生物体及食品中PBDD/Fs的存在水平,指出电子垃圾热处理、垃圾焚烧等工业热过程已导致周边环境和生物体内PBDD/Fs的浓度增高.最后,介绍了国外与PBDD/Fs相关的控制措施和政策法规.  相似文献   

11.
建立了高灵敏度和高选择性的同位素稀释气相色谱/三重四极质谱法测定14种2,3,7,8位溴取代的二噁英同类物的痕量分析方法.结果表明,14种二噁英毒性同类物的平均相对响应因子的相对标准偏差均小于20%;校正曲线在0.1—500μg·L-1范围内显示良好线性(R20.99).仪器的检出限为0.08—4.00μg·L-1,满足PBDD/Fs的痕量分析需求.为验证方法的适用性,以再生铜冶炼飞灰样品为研究对象,利用所建立的方法测定了14种PBDD/Fs的含量,样品回收率范围在45%—120%之间,表明该方法可用于实际环境样品中PBDD/Fs的定性和定量分析.  相似文献   

12.
采用同位素稀释法-高分辨气相色谱-质谱测定了2007年北京8个污水处理厂污泥样品中多氯二苯并二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)的分布情况,并根据毒性当量系数计算了污泥中PCDD/Fs的毒性当量(I-TEQPCDD/Fs).样品的I-TEQPCDD/Fs为1.4-15.0pg·g-1dw,平均值为6.0p...  相似文献   

13.
采用同位素稀释法、高分辨气相色谱/质谱检测垃圾焚烧主要工艺段捕集灰中的二英.垃圾焚烧炉预热器、过热器和布袋除尘器捕集灰中二英(PCDD/Fs)的浓度分别为1025ng·g-1,1249ng·g-1和4670ng·g-1,毒性当量(ITEQ)为0073ng·g-1,0026ng·g-1和811ng·g-1.同时,分析了不同氯原子数取代的二英同系物在预热器、过热器、布袋除尘器捕集灰中的变化和对ITEQ值的贡献.  相似文献   

14.
本文建立了土壤和沉积物中20种多溴联苯的同位素稀释气相色谱-高分辨质谱分析方法.样品经索氏提取、多层硅胶柱净化,采用气相色谱-高分辨质谱分析,各组分在10—1000 ng·m L~(-1)范围内线性良好,平均相对响应因子(RRF)的偏差在2.9%—15.1%之间.方法检出限在2.57—135 ng·kg~(-1)之间,批间偏差为1.0%—15.1%.低、中、高的3个加标水平实际样品平均回收率为64.8%±5.5%—156%±7.1%.该方法可用于土壤和沉积物中痕量多溴联苯的检测.  相似文献   

15.
电子垃圾拆解对台州氯代/溴代二噁英浓度和组成的影响   总被引:1,自引:0,他引:1  
电子垃圾拆解会导致有毒有害污染物向大气的排放,造成环境污染的产生。为了解电子垃圾拆解及废旧金属再生活动对拆解地及邻近地区空气质量的影响,对台州峰江金属再生园区附近及对照区路桥市区大气中(气态和颗粒态)氯代二噁英(PCDD/Fs)、溴代二噁英(PBDD/Fs)的含量、同系物组成及气/固分配规律进行了研究,通过相关性分析探讨了PCDD/Fs和PBDD/Fs的可能来源。结果显示,金属再生园区冬季采样期间17种2,3,7,8-PCDD/Fs和8种2,3,7,8-PBDD/Fs的平均浓度分别为212.2 pg·m-3和17.6 pg·m-3,夏季采样期间的平均浓度分别为84.5 pg·m-3和5.4 pg·m-3,均显著高于对照点。夏季采样期间对照点处于再生园区的下风向,其二噁英浓度高于冬季,说明其受到了金属再生园区的明显影响。基于相关性分析的结果,塑料焚烧是金属再生活动中氯代和溴代二噁英的主要来源。初步的暴露风险评价表明,金属再生园区附近居民每日摄入的二噁英含量远远超过世界卫生组织规定的人体每日耐受量(1~4 pg W-TEQ·kg-1·d-1)。上述研究结果为规范电子垃圾拆解活动提供了基础数据。  相似文献   

16.
为了解北京市大气细颗粒物(PM_(2.5))中二■英(PCDD/Fs)的污染特征,利用中流量大气颗粒物采样器,在北京市3个功能区5个采样点(两个市区点、两个工业区点和一个背景点),同步连续采集了大气细颗粒物PM_(2.5)样品.参照US EPA 1613B标准方法,应用高分辨率气相色谱/高分辨率质谱(HRGC/HRMS),分析了PM_(2.5)中17种PCDD/Fs的浓度水平和区域分布特征,并对PCDD/Fs的污染来源做了初步探讨.结果表明,5个采样点PM_(2.5)的日均质量浓度范围102—146μg·m~(-3),平均日均值119μg·m~(-3),超出国家二级标准(75μg·m~(-3))59%,污染较重.在空间分布上,PM_(2.5)的日均浓度表现为工业区大于背景点大于市区的特征.所有采样点17种PCDD/Fs的总浓度范围∑PCDD/Fs是1.60—4.09 pg·m~(-3),平均值3.23 pg·m~(-3),PCDD/Fs总毒性当量∑TEQ范围是140.54—275.69 fg I-TEQ·m~(-3),平均值233.18 fg I-TEQ·m~(-3).与国内外其他城市相比,北京市大气PM_(2.5)中PCDD/Fs污染处于相当或略高水平.OCDD、OCDF和1,2,3,4,7,8-HpCDF是PCDD/Fs的主要组成成分,分别占总浓度∑PCDD/Fs的10%、19%和24%.对于总毒性当量∑TEQ贡献最大的是2,3,4,7,8-PeCDF,占总毒性当量的48.3%,∑PCDDs/∑PCDFs比值范围为0.19—0.23,平均值0.22,属于典型的"热源"特征.在浓度变化上, PCDDs呈现为随氯取代个数的增加而增加,除OCDF外, PCDFs的各单体浓度也随着取代氯原子个数的增加而增大.在区域分布上,PCDD/Fs浓度表现为工业区高于市区,市区大于背景点,充分体现了局地源的特点.采样期间工业热过程(化石燃料燃烧、电弧炉、烧结和冶炼等)、机动车排放和固体垃圾焚烧是北京冬季大气PM_(2.5)中PCDD/Fs和PM_(2.5)污染水平的主要影响因素.  相似文献   

17.
初步研究了四川省卧龙地区5个不同海拔高度的表层土壤和2个牦牛样品中二噁英/呋喃(PCDD/Fs)、共平面多氯联苯(co-PCBs)和多氯萘(PCNs)的分布特征、来源、毒性当量以及生态风险状况.土壤样品中总2,3,7,8-PCDD/Fs的含量范围为2.48-4.30 pg·g-1dw,平均3.50 pg·g-1dw,最高含量在海拔3927 m的塘房.co-PCBs的总含量平均为9.14 pg·g-1dw,最高值在海拔4487 m的垭口.总2,3,7,8-PC-DD/Fs和总co-PCBs含量随海拔高度的变化表现出正相关关系.不同海拔高度土壤中的PCDD/Fs和co-PCBs异构体的分布相似,表明具有相同的来源.总PCNs与海拔梯度呈负相关关系,最高含量出现在海拔3345 m的贝母坪,平均21.4 pg·g-1dw,主要以3.氯为主.土壤中PcDD/Fs毒性当量浓度范围为0.29-0.43pg TEQ·g-1dw.牦牛肉和牦牛组织中PcDD,/Fs总浓度分别为27.5和23.6 pg·g-1脂肪,毒性当量浓度为4.04和4.07 pg TEQ·g-1脂肪.结果表明,牦牛中的PCDD/Fg,co-PcBs和PCNs不大可能对卧龙地区人群导致严重的负面效应.  相似文献   

18.
城市垃圾焚烧主要工艺段捕集灰中二(口恶)英的分布特征   总被引:1,自引:0,他引:1  
采用同位素稀释法、高分辨气相色谱/质谱检测垃圾焚烧主要工艺段捕集灰中的二(口恶)英.垃圾焚烧炉预热器、过热器和布袋除尘器捕集灰中二(口恶)英(PCDD/Fs)的浓度分别为10.25ng·g-1,1.249ng·g-1和467.0ng·g-1,毒性当量(I-TEQ)为 0.073ng·g-1,0.026ng·g-1和8.11ng·g-1.同时,分析了不同氯原子数取代的二(口恶)英同系物在预热器、过热器、布袋除尘器捕集灰中的变化和对I-TEQ值的贡献.  相似文献   

19.
建立了同位素稀释-高分辨气相色谱/高分辨质谱法(HRGC/HRMS)测定南极土壤、苔藓和地衣样品中23种有机氯农药的分析方法.样品经冷冻干燥、研磨处理后用正己烷∶二氯甲烷(1∶1,V∶V)混合溶剂进行加速溶剂萃取(ASE),萃取液经硅胶-氧化铝层析柱和C18小柱净化后,进HRGC/HRMS检测分析.样品中目标物定量采用平均相对响应因子法,6点标准曲线响应因子的相对标准偏差(RSD)≤20%,方法的线性范围为0.4—800μg·L-1,回收率在62%—101%之间.实际样品分析结果表明,23种OCPs的加标回收率为40%—100%,在土壤、苔藓和地衣样品中的检出限(LODs)分别为0.024—5.01、0.2—12.2、0.020—13.7 pg·g-1,可以满足南极环境样品中有机氯农药的检测分析.  相似文献   

20.
模拟电子垃圾热回收处理过程,将丙烯腈-丁二烯-苯乙烯塑料(ABS)、四溴双酚A(TBBPA)分别与4种金属(Cu、Fe、Zn和Ni)进行混合,在自制的加热装置内开展了不同气氛、不同温度条件下热解实验研究。对产物溴代二噁英(PBDD/Fs)检测显示,2,3,7,8-TBDF、2,3,7,8-TBDD及1,2,3,4,7,8-与1,2,3,6,7,8-Hx BDD为主要产物,其中2,3,7,8-TBDF含量最高,约占总PBDD/Fs的12%~90%。反应生成的8种2,3,7,8-PBDD/Fs浓度范围为0.05~2 082 ng·g-1。在同等实验条件下,温度升高有利于ABS塑料混合物中PBDD/Fs的生成。Cu、Fe、Zn和Ni四种金属都具有催化效应。空气、氮气气氛下热解实验显示,空气气氛下PBDD/Fs的生成量大,2种条件下生成的二噁英总量比值在0.8~99.6之间变化。无金属催化条件下此比值变化范围较小,为0.8~1.5;在金属参与条件下,此比值变化范围加大,为1.2~99.6;其中,在Cu和Fe参与下,此比值较高。各种热解条件下形成的PBDD/Fs都具有PBDFsPBDDs的特征。研究结果说明,虽然无金属参与条件下含TBBPA的ABS热解生成溴代二噁英浓度较低,但金属(如Cu等)存在时,此类污染物的浓度显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号