首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
龙岩大气颗粒物中多环芳烃源识别及污染评价   总被引:2,自引:0,他引:2  
采用恒能量同步荧光法,研究了龙岩市区不同功能区冬、春季大气颗粒物中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs含量进行了评价. 结果表明:龙岩市区各功能区大气颗粒物中ρ(PAHs)为278.95~ 718.25 ng/m3,且冬季高于春季. 根据PAHs中一些特征标志物的比值,可判断冬、春季市区内PAHs主要来源于汽车尾气和燃煤污染. 采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气颗粒物中PAHs的污染状况显示,冬季3个功能区苯并[a]芘含量(ρ(BaP))均超过国家标准(10 ng/m3),且ρ(PAHs)均严重超标.   相似文献   

2.
荧光光谱法研究有机污染物的环境行为   总被引:2,自引:0,他引:2  
荧光光谱法作为一种测定痕量有机化合物和生化物质的高灵敏度和高选择性的测试手段 ,因其操作简单、运行成本低和非破坏性 ,在环境科学等方面得到了广泛的应用 .本文介绍了荧光光谱法研究PAHs与溶解态有机物间相互作用、同步荧光法研究溶解态PAHs的生物降解、荧光分析法直接研究溶解态PAHs的光降解以及用同步荧光法测定鱼胆汁中PAHs的代谢产物等几方面的工作 ,展示了荧光光谱法用于研究有机污染物的环境行为的应用前景  相似文献   

3.
王娟  郭观林  秦宁  侯荣  杨敏  康艺瑾  段小丽 《环境科学》2019,40(10):4345-4354
为研究大气颗粒物中多环芳烃(PAHs)的粒径分布与富集特征,确定不同粒径颗粒物中PAHs在人体呼吸系统各器官内的沉积浓度,以准确评估其人体呼吸暴露风险,选择东北某钢铁工业城市,在采暖期和非采暖期按粒径对大气颗粒物进行分级采样,用高效液相色谱对样品中14种优控PAHs进行分析,并将大气颗粒物粒径分级采样技术与人体呼吸系统内部沉积模型结合进行呼吸暴露评估.结果表明,大气颗粒物中总PAHs浓度变化显著,采暖期(743. 9 ng·m~(-3))高于非采暖期(169. 0ng·m~(-3)),多数PAHs(86. 3%~89. 9%)与大气中粒径≤2. 06μm的细颗粒有关;中低分子量PAHs单体呈双峰型,峰值位于1. 07~2. 06μm和7. 04~9. 99μm.高分子量PAHs呈单峰分布,峰值位于1. 07~2. 06μm; 4环PAHs的含量占主导优势,为总PAHs浓度的40%;在采暖期和非采暖期分别有53. 3%和55. 3%的颗粒态PAHs沉积在人体呼吸系统的不同器官,分别采用人体呼吸系统沉积浓度和在颗粒物上的总浓度计算该地区人群颗粒态PAHs的终身致癌超额风险值(incremental lifetime cancer risk,R值),成人的R值在采暖期为1. 3×10-5和2. 9×10-5,非采暖期为3. 1×10-6和6. 0×10-6,儿童的R值在采暖期为1. 0×10-5和2. 3×10-5,非采暖期为2. 4×10-6和4. 8×10-6.结果表明,颗粒物粒径分布直接影响呼吸系统沉积浓度和致癌风险,将分级采样技术与呼吸系统沉降模型结合方法可有效避免对人体呼吸暴露量的过度评估.  相似文献   

4.
北京市西三环地区大气颗粒物中多环芳烃的分布特性   总被引:2,自引:1,他引:1  
李峣  钱枫  何翔 《环境科学研究》2013,26(9):948-955
于2012年3—12月在北京市西三环地区按粒径分6级采集大气颗粒物样品,采用气相色谱-质谱(GC-MS)对颗粒物样品中16种优控PAHs(多环芳烃)进行分析. 结果表明:颗粒物中ρ(∑16PAHs)(PAHs的总质量浓度)季节变化显著,表现为冬季>春季>秋季>夏季,并且与ρ(PM)(PM为颗粒物)呈良好线性相关;不同粒径颗粒物中ρ(PAHs)呈向小粒子富集的趋势,PM2.1中ρ(PAHs)约占ρsum(∑16PAHs)〔6级颗粒物中ρ(∑16PAHs)总和〕的64%~87%;除夏季3环PAHs占优势外,其他季节均以4~ 5环PAHs占优势;同时,随着粒径的减小,PAHs有向高环数富集的趋势. 运用主成分分析和多元线性回归法进行源解析发现,机动车尾气排放和燃煤是本地区大气颗粒物中PAHs的主要来源;不同粒径颗粒物中的PAHs来源有差异,2.1~10.2μm粒径段颗粒物中PAHs主要来源于机动车尾气排放,贡献率为63.0%;而1.3~2.1μm和<1.3μm的颗粒物中PAHs均主要来源于燃煤,贡献率分别为56.8%和58.7%.   相似文献   

5.
采用恒能量同步荧光法研究了龙岩市区不同功能区冬、春季大气飘尘中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs进行了污染评价。结果表明,龙岩市区各功能区大气飘尘中PAHs总量在278.95~718.13ng/m3,且冬季高于春季。根据荧蒽与芘质量浓度比值,可判断冬春季市区内PAHs主要来源于汽车尾气和燃煤污染。采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气飘尘中PAHs的污染状况,冬季3个功能区苯并[a]芘浓度均超过国家标准(BaP,10ng/m3),且PAHs基本上均严重超标。  相似文献   

6.
为研究武汉市大气质量状况,在武汉市ID(工业区)、DT(中心城区)、BG(植物园)设3个采样点,连续1 a同步采集了大气中的PM2.5(细颗粒物)样品,并研究了其中PAHs(多环芳烃)的质量浓度、来源和健康风险.结果表明,武汉市ID、DT、BG采样点的ρ(PAHs)年均值分别为(75.60±28.12)(59.77±22.81)(24.27±9.15)ng/m3,并呈冬季最高、夏季最低的季节性变化趋势.PMF(正定矩阵因子分析)结果显示,ID、DT、BG采样点的PAHs的主要来源分别为燃煤和扬尘(35%和33%)、机动车和扬尘(30%和34%)、机动车和木质燃烧(33%和32%),在ID和DT采样点,扬尘对大气颗粒物中PAHs的贡献都很大,而燃煤和木质燃烧分别是ID和BG采样点PAHs的重要来源,在3个采样点中,机动车对颗粒物中PAHs贡献都较大,尤其是DT和BG采样点,机动车的贡献都超过30%.利用后向轨迹模型分析采样期间武汉市的气团来源,并结合每天的ρ(PAHs)发现,不同聚类气团对应的ρ(PAHs)差异很小,表明区域传输对武汉市PAHs贡献不大.通过武汉市大气颗粒物中PAHs吸入风险评估发现,武汉市PAHs的吸入风险范围在10-7~10-5之间,ID和DT采样点的部分人群的吸入风险稍高于安全范围(10-6以下),有潜在的致癌风险.   相似文献   

7.
采集了2005年5月16日~6月3日上海市桃浦地区气相样品、TSP样品及不同粒径的颗粒物样品.用GC-MS对各样品中美国EPA规定优先控制的16种多环芳烃(PAHs)做了定量分析.结果表明,大气中PAHs的气固相分配系数(KP)和各物质的过冷饱和蒸气压(pl0)呈良好的线性相关.多元线性回归分析表明,PAHs的气固相分配受颗粒物粒径大小的影响,粒径越大,对PAHs的气固相分配影响越大;过冷饱和蒸气压越高,气固相分配越易受到粒径大小的影响.  相似文献   

8.
博斯腾湖流域大气多环芳烃污染特征、干沉降通量及来源   总被引:1,自引:1,他引:0  
本研究使用大气被动采样器(PAS-PUF)和干沉降被动采样器(PAS-DD),分别于2016年采暖期和2017年非采暖期对新疆博斯腾湖流域及周边地区15种USEPA优控多环芳烃(PAHs)大气浓度和干沉降进行了观测,并对其污染特征和来源进行了研究.结果表明,采暖期和非采暖期博斯腾湖流域PAHs大气浓度范围分别为6. 38~245. 43 ng·m~(-3)和2. 33~74. 76ng·m~(-3);采暖期与非采暖期均呈现出居民区湖泊周边塔中的空间分布.采暖期和非采暖期PAHs大气干沉降通量范围分别为0. 45~18. 10μg·(m~2·d)-1和0. 25~8. 15μg·(m~2·d)-1;采暖期居民区PAHs干沉降通量比湖泊周边和塔中采样点高,但在非采暖期塔中采样点高于其它采样点.整体而言,博斯腾湖流域大气及干沉降中PAHs在采暖期显著高于非采暖期,在采暖期与非采暖期均以菲(Phe)、芴(Flu)、荧蒽(Flua)和芘(Pyr)等3~4环PAHs为主.比值法源解析结果显示,博斯腾湖流域大气和干沉降中PAHs主要来源于煤炭和生物质燃烧; HYSPLIT前向和后向轨迹模拟结果表明,非采暖期居民区较高PAHs排放通过大气传输到达博斯腾湖区,经大气干沉降进入水体,可能会对博斯腾湖水生环境造成影响.  相似文献   

9.
上海市大气沉降物中多环芳烃赋存特征及其来源   总被引:2,自引:0,他引:2  
以上海市大气沉降为研究对象,采集了上海市8月、9月、10月3个月的大气沉降物,分析了上海市大气沉降物中16种PAHs的质量浓度、空间分布特征和组成结构,计算了上海市8个采样点∑15PAHs大气沉降物通量.同时,采用正定矩阵因子分解(PMF)模型对大气沉降中的PAHs进行源解析,模型对PAHs的来源有较为细致的判读,结果表明:大气沉降物中∑16PAHs的浓度范围0.458~21.013μg/L,其中,溶解相中∑16PAHs的浓度范围为0.174~0.625μg/L,颗粒相中∑16PAHs的浓度范围为0.275 20.455μg/L.上海市∑15PAHs大气沉降通量在0.24~14.74μg/(m2×d)之间,沉降通量均值为2.77μg/(m2×d).根据PMF模型解析,机动车尾气排放为大气沉降物中PAHs的主要污染物,源贡献率为40.23%,其次,居民烹调、煤炭燃烧、石油挥发泄露和炼焦排放依次占23.73%、14.75%、14.35%和6.92%.  相似文献   

10.
南京夏秋季大气颗粒物和PAHs 组成的粒径分布特征   总被引:12,自引:3,他引:9       下载免费PDF全文
采集南京市2007 年夏、秋季节灰霾天和非灰霾天不同粒径大气颗粒物,分析了6 月份农村秸秆焚烧对南京市大气中颗粒物和多环芳烃 (PAHs)的浓度、粒径分布和分子组成的影响.结果表明,南京市大气颗粒物在灰霾天呈单模态-积聚模分布,而在其他天气条件下呈积聚模和粗模双模态分布.秸秆焚烧释放出大量细粒子和低分子量PAHs,使低环数(3~4 环) PAHs 的粒径分布由非灰霾天不同粒径上的均匀分布转变为灰霾天的单模态分布,总量增加了约41%,且主要富集在0.4~2.1µm 的细颗粒物上;而高环数(5~6 环)PAHs 的粒径分布和浓度在秸秆焚烧前后均没有显著变化,呈积聚模分布.因秸秆焚烧形成的灰霾期,大气中细颗粒物和低分子量PAHs 的浓度均明显提高.  相似文献   

11.
恒能量同步荧光法测定土壤中多环芳烃的研究   总被引:1,自引:1,他引:0  
为了建立快速测定土壤中多环芳烃的方法,文章运用恒能量同步荧光法对16种多环芳烃混合标样进行了分析。在优化的实验条件下,对实际土壤样品进行分析,可以鉴别出10种多环芳烃。研究表明:恒能量同步荧光法适合土壤样品中多环芳烃的快速分析;简化了土壤样品的前处理过程。  相似文献   

12.
青岛近岸表层海水中PAHs的分布特征及物源初步解析   总被引:3,自引:3,他引:0  
采用固相萃取-高效液相色谱-荧光检测法分析了青岛近岸海水中15种PAHs的质量浓度.结果表明,海水中PAHs的总量变化范围为8.23~272.02 ng.L-1,河口区质量浓度最高,远离城区的清洁区质量浓度最低.就组成特征而言,2~3环PAHs是其主要组分,占总量的质量分数为52.2%~93.8%,4~6环PAHs占总量的质量分数为6.2%~47.8%.表层海水中PAHs总浓度和DOC浓度之间有较好的相关性,相关系数为0.944 3.青岛湾表层海水中PAHs浓度组成相对稳定.利用Fl/(Fl+Py)和An/(An+Ph)分析表层海水中PAHs的来源,结果表明除清洁区表层海水中PAHs主要来源于煤和木材燃烧外,青岛近岸海水中的PAHs主要来源于石油制品和石油燃烧.  相似文献   

13.
孙盼盼  谢标  周迪  宋一民  杨浩 《环境科学学报》2016,36(10):3615-3622
采用GC-MS检测了滇池宝象河水库沉积物中16种美国环保署(US EPA)优先控制的多环芳烃(PAHs)的含量,并对其垂直分布特征及来源进行分析,以此了解宝象河水库近年来PAHs的变化.结果表明,水库沉积物中16种PAHs均有检出,其含量范围为162.26~762.24ng·g~(-1),平均值为423.30 ng·g~(-1).自底层50 cm至表层,沉积物中PAHs含量呈上升趋势.从多环芳烃环数来看,沉积物中的PAHs以2~3环为主,其含量为128.34~518.81 ng·g~(-1),平均值为279.88 ng·g~(-1),占PAHs总量的42.2%~84.1%,平均值为67.6%.FLA/(FLA+PYR)、Ba A/(Ba A+CHR)和Icd P/(Icd P+Bghi P)3组比值及PAHs各组分的分析结果表明,燃烧过程是沉积物中PAHs的主要来源,主要为煤炭、生物质的燃烧.PAHs含量与总有机碳(TOC)之间有显著正相关关系,TOC影响宝象河水库沉积物中PAHs的分布.  相似文献   

14.
大气气溶胶中硝基多环芳烃分析方法的建立及应用   总被引:3,自引:0,他引:3  
硝基多环芳烃类化合物是一类强致突变和致癌物.大气中的硝基多环芳烃主要由化石类燃料燃烧时直接释放,或由前体化合物多环芳烃经光化学反应生成,其浓度远低于多环芳烃.利用高效液相色谱法,分离并富集目标组分,结合气相色谱-质谱技术,建立大气气溶胶中硝基多环芳烃类化合物的检测方法,仪器检测限为1.17~2.94pg,硝基多环芳烃指...  相似文献   

15.
武汉市洪山区春季PM2.5浓度及多环芳烃组成特征   总被引:2,自引:0,他引:2  
分析了武汉市洪山区2014年春季PM2.5的浓度,并利用气相色谱/质谱(GC/MS)测定了多环芳烃(PAHs)的组成.结果表明,PM2.5的质量浓度为47.99~195.87μg/m3,平均质量浓度为(101.34±32.49)μg/m3,超标天数占总监测天数的81.82%;PM2.5质量浓度与各气象要素间的相关性不显著.PM2.5中PAHs日均浓度变化范围为8.44~34.45ng/m3,平均浓度为21.48±7.03ng/m3,其中4环PAHs的含量最高,达到11.72ng/m3,占总PAHs浓度的54.56%,结合典型污染来源中PAHs的特征比值和数学统计中主成分分析法,判断出其主要污染来源为车辆排放、燃烧源和燃煤源;PAHs日均总毒性当量(∑BaPeq)浓度范围为1.10~5.46ng/m3,平均值为2.99ng/m3,日均超标率达到60.61%.  相似文献   

16.
为探究岩溶槽谷区土壤中多环芳烃(PAHs)的环境行为,选取典型的竹林地、灌丛地和耕地作为研究对象,运用气相色谱-质谱联用仪定量分析土壤中的PAHs.结果表明,土壤剖面中PAHs污染水平表现为竹林地(204.13 ng·g-1)>耕地(175.47 ng·g-1)>灌丛地(106.00 ng·g-1),土壤质量总体良好.3种土地类型均表现为浅层土壤的PAHs含量显著高于深层土壤(p<0.05),表明岩溶区土壤对防止地下水污染具有重要意义;2~3环PAHs易运移至深层土壤,而4~6环PAHs受TOC含量的影响则主要积聚在浅层土壤,富集能力表现为灌丛地>耕地>竹林地;PAHs运移特征主要受控于有机质的吸附和水的溶解两种机制,PAHs和土壤的理化性质是影响PAHs运移的重要因素.结合同分异构体比值法和主成分分析法的源解析结果,得出研究区土壤中PAHs主要源于当地能源燃烧和交通污染,而大气沉降是重要污染途径.  相似文献   

17.
利用快速溶剂提取-高效液相色谱-紫外/荧光检测器串联的方式检测土壤中16种多环芳烃,重点优化了梯度洗脱程序和紫外荧光检测波长程序,优化后的方法检出限在0.2~7.8μg/kg,回收率在88%~113%之间.对临沂某化工企业四周1000米以内的20个土壤样品进行了检测,结果发现,多环芳烃总量范围为27.4~553μg/kg,平均值为120μg/kg,参照Maliszewska-Kordybach建议的欧洲土壤中多环芳烃污染程度分级方法,在检测的20个土壤样品中有3个样品属于轻度污染,其他属于无污染.  相似文献   

18.
长江水系武汉段沉积物再悬浮过程中PAHs的释放动力学   总被引:2,自引:0,他引:2  
采用沉积物再悬浮模拟装置进行了再悬浮过程中多环芳烃(PAHs)的释放动力学实验,研究了长江水系武汉段7种沉积物中PAHs的释放动力学特征,并考察了沉积物组成对PAHs释放动力学的影响.结果表明,不同剪应力作用下的沉积物再悬浮过程中,不同性质沉积物中PAHs向上覆水体的释放均符合一级动力学方程,且释放过程分为两个阶段,第...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号