首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
多环芳烃在岩溶地下河表层沉积物-水相的分配   总被引:5,自引:3,他引:2  
蓝家程  孙玉川  肖时珍 《环境科学》2015,36(11):4081-4087
利用实测老龙洞地下河水中和沉积物中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的实际浓度,获取了溶解相-沉积物中PAHs的分配系数Kp值.研究了老龙洞地下河PAHs在水相和沉积物中的质量浓度变化及其在水相和沉积物间的分配.研究结果表明水相和沉积物中PAHs质量浓度分别为81.5~8 089 ng·L-1,平均值(1 439±2 248)ng·L-1和58.2~1 051 ng·g-1,平均值(367.9±342.6)ng·g-1;PAHs组成均以2~3环为主,但沉积物中明显富集高环PAHs.沉积物-水相Kp值分布在55.74~46 067 L·kg-1范围内,随PAHs环数的增加而增大.沉积物-水相中实测的有机碳分配系数(lg Koc)大部分高于预测值上限,PAHs强烈吸附在沉积物上.lg Koc与正辛醇-水分配系数(lg Kow)呈较好的线性自由能关系(R2=0.75),但其斜率小于1,推测地下河沉积物对PAHs化合物的吸收能力较差.  相似文献   

2.
为研究西南岩溶地区典型地下河沉积物中多环芳烃(PAHs)的污染特征,该文选择南宁市清水泉地下河进行分析,沿地下水流动方向共采集8个表层沉积物样品,并检测16种PAHs的含量。结果表明,地下河表层沉积物中∑PAHs浓度范围为257.71~609.29 ng/g,从PAHs组成来看,16种PAHs均被检出,且4环含量5~6环含量2~3环含量;空间分布规律呈下游含量中游含量上游含量的趋势,且2~3环PAHs的百分比先增大后降低,而4~6环PAHs的百分比变化则正相反;研究区的PAHs来源主要为煤炭和石油混合燃烧源(贡献率为62.90%)、石油源(贡献率为19.77%)、煤炭和天然气混合燃烧源(贡献率为8.54%)。  相似文献   

3.
大冶湖表层沉积物-水中多环芳烃的分布、来源及风险评价   总被引:15,自引:13,他引:2  
于2015年8月采集大冶湖表层沉积物8个及上覆水样8个,使用GC-MS分析16种EPA优控PAHs.结果表明在表层沉积物及水体中ΣPAHs范围分别为:35.94~2 032.73 ng·g-1和27.94~242.95 ng·L~(-1),平均值分别为940.61 ng·g-1和107.77 ng·L~(-1);表层沉积物中PAHs分布呈现湖中高于岸边趋势,水体则呈大致相反趋势,表层沉积物中以4~5环高环化合物为主要组分,在水体中主要以2环以及4环和5环PAHs为主,与国内外其他湖泊相比处于中度污染水平;来源解析表明大冶湖表层沉积物及水体中多环芳烃主要来自于高温燃烧源,沉积物中PAHs高环分子都占据绝大部分,反映出了沉积物受矿冶冶炼长期累积污染的效应;所检测沉积物中各单体PAH及ΣPAHs含量均未超过ERM以及FEL,表明大冶湖表层沉积物中PAHs无潜在生态风险;终生致癌风险评价表明大冶湖水体中PAHs通过摄入和皮肤接触风险都处于USEPA推荐的可接受水平范围之内,但都高于瑞典环保局和英国皇家协会推荐的最大可接受风险水平,需要对7种致癌PAHs污染加以防治.  相似文献   

4.
郭雪  毕春娟  陈振楼  王薛平 《环境科学》2014,35(7):2664-2671
采用GC-MS联用技术分析了滴水湖及其水体交换区23个表层沉积物和土壤中16种多环芳烃(PAHs)的含量,探讨其分布特征及来源并对其生态风险进行评价.结果表明,滴水湖沉积物中16种PAHs含量范围是11.49~157.09 ng·g-1,平均含量为66.60 ng·g-1,湖区沉积物中PAHs含量比入湖区低,但比出湖区高.湖区外的沉积物和土壤中PAHs组成主要以中、高分子量PAHs(4环、5~6环)为主,而湖区内表层沉积物中PAHs组成则以低分子量PAHs(2~3环)和高分子量PAHs(5~6环)为主.通过特征化合物分子比值法、主成分分析及多元线性回归模型判源,表明湖区外沉积物和土壤中PAHs来源主要为燃烧源,而湖区内沉积物中PAHs来源为燃烧源和石油类产品泄漏的混合来源.生态风险评价显示,滴水湖及其水体交换区沉积物和土壤中PAHs生态风险较低.  相似文献   

5.
岩溶地下河流域水中多环芳烃污染特征及生态风险评价   总被引:13,自引:8,他引:5  
利用气相色谱-质谱联用仪(GC/MS)测定了老龙洞地下河流域水中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,研究了流域内PAHs组成、污染水平,并对其进行了生态风险评价.结果表明,老龙洞地下河水中ΣPAHs含量变化范围为81.5~8 019 ng·L-1,表层岩溶泉ΣPAHs含量为288.7~15200 ng·L-1,地表水ΣPAHs含量为128.4~2 442 ng·L-1;受黄桷垭镇污水的影响,地下河水相对于地下水补给来源的落水洞和地表水含量较高.流域内水中PAHs均以低环为主,尤其是3环占主导.受污水、季节的影响及PAHs物理化学性质的差异,水中PAHs月变化呈现不同的变化特征.地表水、落水洞污水排放对地下河PAHs来源起重要作用.流域内水中PAHs以低环污染为特征,所有检测到的PAH化合物处于中等污染和重污染风险.  相似文献   

6.
为了研究深圳大鹏湾海域沉积物和生物体中多环芳烃的污染状况,2011年10月在大鹏湾采集表层沉积物及鱼类、虾类和贝类等生物样品,采用气相色谱-质谱法(GC-MS)分析了16种优先控制多环芳烃(PAHs)的含量.结果表明,大鹏湾海域表层沉积物和生物样品中PAHs总量范围分别为216.56~1 314.92 ng·g-1(干重,下同)和70.88~251.90 ng·g-1(湿重,下同);生物样品按平均含量计,鱼类最高(171.52 ng·g-1),贝类次之(134.75 ng·g-1),虾类最低(123.35 ng·g-1).与全球其他海域相比,大鹏湾海域表层沉积物和生物体PAHs污染处于中等水平.沉积物中PAHs的组成以4环为主,来源分析表明该海域PAHs污染主要来源于化石燃料燃烧源和石油污染源的共同输入.生物体中PAHs主要为2~3环PAHs,这与其生活习性和污染物的生物可利用性等因素有关.风险评价表明,大鹏湾表层沉积物中的PAHs在一定程度上可能会对该海域生物产生不利影响;生物样品PAHs的苯并(a)芘等效浓度值相对较高,长期食用这些水产品可能会有潜在的健康风险.  相似文献   

7.
厦门杏林湾水系表层沉积物中PAHs分析与风险评估   总被引:2,自引:1,他引:1  
利用ASE-GC-MS(加速溶剂萃取与气相色谱质谱仪联用)方法分析了USEPA(美国环保署)16种优控PAHs在厦门城郊杏林湾水系的19个表层沉积物样点中的含量,并对其组成、来源和风险进行了探讨.结果表明,杏林湾水系表层沉积物中PAHs含量介于413.00~2 748.81 ng·g-1,均值为949.56 ng·g-1;在检测出的13种PAHs中,强致癌性的Bk F和Bghi P检出率高达73.68%,均值分别为69.15 ng·g-1和49.86 ng·g-1;PAHs以2~4环为主,其中2+3环比例均值为61.03%,4环比例均值为23.53%;5和6环均值为15.82%.在所采集的沉积物样品中,中度污染占调查样品数的68.42%,高度污染的占31.58%.利用Ant/(Ant+Phe)和Fla/(Fla+Pyr)比值法和主成分分析方法对杏林湾流域中PAHs其来源进行分析,以及平均沉积物质量基准商(m SQG-Q)法进行生态风险评估,结果表明其PAHs的主要来源为石油源以及石油燃烧源;SQG-Q小于0.50;综合含量、组成特征以及沉积物质量基准商等评价表明,研究区域内靠近杏林工业区一侧的2、3、5和9号采样区以及13号港头采样区表层沉积物中PAHs具有较高的生态安全风险;值得进一步关注.  相似文献   

8.
2014年6月降雨期间在重庆南山老龙洞地下河出口处进行连续采样监测,利用GC-MS定量分析地下河溶解态中16种优控多环芳烃(PAHs)的含量,研究了降雨期间地下河溶解态PAHs变化特征及来源.结果表明,地下河溶解态PAHs对降雨反应迅速,ΣPAHs出现4个峰值,有2个出现在流量上升阶段,另外两个分别出现在流量最大值处和流量下降阶段.ΣPAHs范围为101~3 624 ng·L-1,平均值578 ng·L-1,7种致癌性PAHs变化较大,含量变化为ND~336 ng·L-1,平均值31.1 ng·L-1,PAHs的组成以低环(2、3环)为主,占水体ΣPAHs的86.17%;降雨对ΣPAHs影响较大,主要表现为雨水对大气污染物的清除及地表径流对地表污染物的冲刷.降雨期间水体中PAHs主要来源于石油类产品、煤炭等化石燃料的不完全燃烧、天然成岩过程,降雨期间老龙洞地下河水体中PAHs污染大部分为中等到重污染水平.  相似文献   

9.
舟山近海水体和沉积物中多环芳烃分布特征   总被引:11,自引:6,他引:5  
2012年,每两个月采集1次浙江省舟山近海水样及表层沉积物样品,检测16种多环芳烃(PAHs)含量.结果表明,舟山近海水体和沉积物中PAHs均存在显著的时空差异性,水体ΣPAHs浓度范围为382.3~816.9 ng·L-1,平均值为552.5ng·L-1;沉积物ΣPAHs含量范围为1017.9~3047.1 ng·g-1,平均值为2022.4 ng·g-1.空间分布上,水体ΣPAHs最大值和最小值分别出现在小洋山和燕窝山海域,而沉积物中分别出现在小洋山和朱家尖南沙海域.时间变化上,水体ΣPAHs最大值和最小值出现在10月和6月,而沉积物中分别出现在8月和6月.PAHs污染来源主要是油类排放和木柴、煤燃烧的共同叠加作用.结合PAHs的生物阈值,利用超标系数法评价舟山近海PAHs的生态风险,结果表明,ΣPAHs存在较低几率的潜在风险,但苊单体存在较高几率的潜在风险,二氢苊和芴可能存在生态风险.对水-沉积物界面PAHs的富集研究表明,舟山近海沉积物中富集了大量PAHs,富集系数(Kd值)岱山岛大于舟山本岛,并与沉积物的PAHs含量分布一致.  相似文献   

10.
岩溶地下河流域表层土壤多环芳烃污染特征及来源分析   总被引:10,自引:8,他引:2  
蓝家程  孙玉川  师阳  徐昕  袁道先  胡宁 《环境科学》2014,35(8):2937-2943
采集重庆南山老龙洞地下河流域农田土壤(0~20 cm),利用气相色谱-质谱联用仪(GC/MC)测定了土壤样品中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,分析其含量和组成,污染水平及污染来源.结果表明,流域内不同地点表层土壤16种PAHs总量变化范围为277~3301 ng·g-1,平均值为752.6 ng·g-1±635.5 ng·g-1,所有样品均遭受污染,其中57%为轻污染,29%为污染土壤,而14%为重污染.多环芳烃的组成以2~3环为主,占总量的28.72%~72.68%,平均值为48.20%;4环和5~6环含量分别为7.77%和34.03%.土壤PAHs含量与有机质(SOM)含量显著相关,而与pH值相关性不强.比值法和主成分分析(PCA)表明,流域内土壤主要来自交通排放与煤炭、石油及生物质燃烧的混合源以及石油源.  相似文献   

11.
利用高效液相色谱-三重四极杆质谱法(HPLC-MS/MS)以及气相质谱法(GC/MS),以白洋淀典型区域(鱼塘、开阔水域)的清淤区和未清淤区作为采样点,探究清淤前后沉积物样品中22种抗生素和16种多环芳烃的分布特征,并评价其风险.结果表明,白洋淀沉积物中22种抗生素的含量范围为0~52.89 ng ·g-1,其中喹诺酮类抗生素含量最高.南刘庄开阔水域的抗生素平均含量为46.25 ng ·g-1,远高于采蒲台开阔水域的19.07 ng ·g-1.南刘庄清淤后抗生素的平均含量为9 ng ·g-1,比清淤前降低了80.54%,清淤效果明显,而采蒲台区域清淤前后沉积物中抗生素的含量没有明显差别.16种多环芳烃(PAHs)的总量范围在23.79~329.40 ng ·g-1,其中萘的含量最高可达242.02 ng ·g-1,荧蒽的含量最低;南刘庄区域开阔水域沉积物中PAHs的平均含量为117.45 ng ·g-1,高于采蒲台区域的57.98 ng ·g-1,南刘庄开阔水域清淤后PAHs的平均含量为50.49 ng ·g-1,减少了57.01%.生态风险评估表明,南刘庄开阔水域S2区域的恩诺沙星和诺氟沙星为高风险,说明白洋淀未清淤区域沉积物中的喹诺酮类抗生素风险不容忽视;而多环芳烃的生态风险较低,仅府河S1区域的萘处于中风险,其它均为低风险.  相似文献   

12.
在新疆博斯腾湖及其上游采集了8个表层沉积物和1根湖心沉积柱样品,分析了其中16种多环芳烃(PAHs)的含量,对其时空分布特征、来源和潜在生态风险进行了研究,并采用~(210)Pb同位素测年法分析了沉积速率和沉积柱的时间跨度.结果表明:表层沉积物样品中PAHs含量范围为57.37~360.24 ng·g~(-1)(干重),开都河沉积物中PAHs以低分子量PAHs(2~3环)为主,博斯腾湖沉积物中PAHs以高分子量PAHs(4~6环)为主.开都河和博斯腾湖沉积物中萘(Nap)、菲(Phe)、苯并(b)荧蒽(BbF)和茚并(1, 2, 3-cd)芘(IP)等单体的含量较高.空间分布呈现出上游河流开都河高于博斯腾湖区,且湖区污染主要集中在湖心处的污染特征.沉积柱样品中15种PAHs含量范围为29.85~211.13 ng·g~(-1),沉积速率为0.18 cm·a~(-1),PAHs组成以5环和6环为主.沉积时间跨度为1852—2016年,PAHs含量峰值出现在1994年.采用比值法对表层沉积物和沉积柱样品进行源解析表明,博斯腾湖流域PAHs主要来源于生物质和煤热解过程,近年来有向煤炭和石油燃烧复合源转变的倾向.效应区间低/中值法(ERL/ERM)和平均效应区间中值商法(M-ERM-Q)评估结果表明,博斯腾湖及其上游表层沉积物中PAHs表现出低生态风险.  相似文献   

13.
截污调水后滇池表层沉积物中16种PAHs的分布特征   总被引:4,自引:3,他引:1  
截污调水等工程实施后,滇池的外源污染已得到有效控制,表层沉积物等内源污染物应加以重视.为研究滇池表层沉积物中16种多环芳烃(PAHs)的分布特征,采用气相色谱-质谱联用法(GC-MS)分析了2016年12月采集的19个滇池表层沉积物样品的PAHs含量,解析其时空分布规律、来源及生态风险.滇池表层沉积物中总多环芳烃(TPAHs)的含量范围为92. 31~1 546. 78 ng·g~(-1),平均值为496. 30 ng·g~(-1),草海TPAHs含量(平均932. 37 ng·g~(-1))远高于外海(平均380. 02ng·g~(-1)),随着截污调水工程的开展,TPAHs含量较2012年大幅下降,已处于我国重点水域中较低水平.滇池表层沉积物中含量最高的物质为荧蒽(80. 65 ng·g~(-1)),毒性当量(TEQ)含量最高的物质为二苯并[a,h]蒽(42. 97 ng·g~(-1)). PAHs组成以4环及5~6环为主(分别占总含量的40. 38%和40. 22%),PAHs构成较以往大体一致.分子比值法分析结果表明,滇池表层沉积物中PAHs主要由生物质或煤的燃烧贡献.基于潜在生态风险标志对比法评估,全湖总体处于低风险水平,但草海的生态风险相对较高,值得进一步关注.本研究结果可为滇池水质的保持与提升提供基础数据和重要参考.  相似文献   

14.
董磊  汤显强  林莉  郦超  黎睿  吴敏 《环境科学》2018,39(6):2588-2599
持久性有机污染物(POPs)在我国地表水和沉积物等环境介质中被广泛检出,对生态环境和人类健康具有潜在的风险.针对现阶段长江经济带核心区域(武汉段)POPs的污染状况信息严重缺乏的问题,本文以使用量较大且环境中检出高的PAHs和PAEs为研究对象,通过对2016年长江武汉段干流15个采样点丰水期水体和沉积物中16种PAHs和6种PAEs污染物含量水平、分布特征和污染来源的系统分析.结果表明,长江武汉段2016年丰水期水体和沉积物中ΣPAHs浓度分别为20.8~90.4 ng·L~(-1)(均值40.7 ng·L~(-1))和46.1~424.0 ng·g~(-1)(均值191.8 ng·g~(-1)),ΣPAEs浓度分别为280.9~779.0 ng·L~(-1)(均值538.6 ng·L~(-1))和1 346.2~7 641.1 ng·g~(-1)(均值3 699.5 ng·g~(-1)).PAHs和PAEs含量均低于国家地表水环境质量标准规定的限值,污染程度小.长江武汉段水体中PAHs以2~3环为主,沉积物中PAHs以2~3环和4环为主,水体和沉积物中PAEs以DEHP和DBP为主.基于比率及主成分分析,长江武汉段水体与沉积物中PAHs主要的来源为煤和生物质燃烧,以及石油来源;水体和沉积物中PAEs的主要来源于塑料和重化工工业,以及生活垃圾.水体及沉积物中两类典型POPs(PAHs和PAEs)对人类健康会产生潜在有害影响,需加强监控.研究成果可为长江(武汉段)环境保护提供基础数据和技术支撑.  相似文献   

15.
聂海峰  成杭新  赵传冬  刘应汉  杨柯  李括  彭敏  刘飞 《环境科学》2013,34(10):3825-3831
为揭示多溴二苯醚(PBDEs)在东北主要河流流域内的污染现状,通过采集该地区流域内表层沉积物样品,采用GC-NCIMS技术对沉积物中41种PBDEs同类物进行分析.结果发现沉积物中BDE209含量低于检出限,其它40种PBDEs同类物总含量(不包含BDE209)范围(干重)为0.91~17.67 ng·g-1.其中第二松花江吉林市上游和下游沉积物样品中PBDEs的检出含量最高,分别为15.86 ng·g-1、17.67 ng·g-1,以BDE207和BDE47为主,分别占PBDEs总量的86.5%和76.6%;其它河流沉积物中各同族体含量差异并不明显.实验结果与国内外最近的文献报道值相比较,再结合生态风险分析显示,东北主要河流沉积物中PBDEs的含量处于低污染水平,目前不存在生态风险.  相似文献   

16.
使用气相色谱-质谱联用仪分析了长江支流沱江流域48个表层沉积物中有机氯农药(organochlorine pesticides,OCPs)的残留水平,探讨了其分布和组成特征及其与总有机碳(total organic carbon,TOC)、藻类有机质之间的关系,以及评估其生态风险.结果表明沱江流域表层沉积物中OCPs的总含量为3.17~127 ng·g-1,其中六六六(hexachlorocyclohexane,HCHs)类农药的含量为2.83~86.0 ng·g-1,滴滴涕(dichlorodiphenyltrichloroethane,DDTs)类农药的含量为0.340~40.9 ng·g-1.OCPs空间分布特点为:上游 < 中游 < 下游 < 支流.HCHs和DDTs的组成成分分析表明,沱江流域存在林丹输入的现象,主要来自于历史残留,这与绝大多数流域的DDTs的输入状况相似.OCPs含量与TOC、藻类有机质含量之间存在着极显著的正相关性关系,表明藻类有机质在TOC对沉积物中的OCPs分配中起更为重要的作用.生态风险评估表明,沱江流域表层沉积物的有机氯农药存在较大的生态风险,可能对河流的底栖生物及生态环境造成明显的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号